Dimensions

PlumX
Cómo citar
Castellanos-Rozo, J., Galvis López, J. A. ., Pérez Pulido, R., Grande Burgos, M. J., Lucas, R., & Gálvez, A. (2022). Las bacteriocinas y su efecto sinérgico con tecnologías emergentes en alimentos. Revista Mutis, 12(2). https://doi.org/10.21789/22561498.1841
Términos de licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Resumen

Las bacteriocinas son péptidos sintetizados por bacterias que presentan un amplio potencial como conservador de alimentos. Son una buena alternativa para reemplazar los aditivos químicos y producir alimentos mínimamente procesados. Las bacteriocinas que se han estudiado con mayor interés en la industria alimentaria son las derivadas de bacterias ácido-lácticas (bal) porque tienen el estatus Generally Regarded As Safe (gras). No obstante, se ha determinado que las bacteriocinas tienen ciertas desventajas a la hora de aplicarlas en los alimentos, especialmente en derivados lácteos. Esas desventajas pueden enmendarse al combinar las bacteriocinas con otros tratamientos emergentes en la industria alimentaria. El objetivo de esta revisión fue realizar un análisis sobre las principales bacteriocinas utilizadas y su efecto sinérgico contra bacterias patógenas y/o alteradoras, cuando se aplican de manera combinada con otros tratamientos como sustancias químicas, sistema lactoperoxidasa, altas presiones hidrostáticas, nanopartículas, bacteriófagos y aceites esenciales. Los resultados de esta revisión indican que cuando se aplican las bacteriocinas con otros tratamientos pueden aumentar la actividad antimicrobiana, lo cual mejoraría la seguridad alimentaria. Se concluye que las mejores combinaciones del uso de las bacteriocinas y tecnologías emergentes son bacteriocinas y nanopartículas y bacteriocinas con bacteriófagos, cuyas combinaciones inhiben el crecimiento tanto de bacterias Gram positivas como de Gram negativas, entre las ventajas están, fáciles de aplicar en los alimentos, pueden ser de bajo costo, no cambian las características sensoriales del producto, permiten combatir la resistencia antimicrobiana, y destruyen completamente a los microorganismos sin darles oportunidad de recuperación durante el periodo de maduración o almacenamiento.  

Palabras clave:

Citas

Aguiar, S J., Pérez, M. I. & Cepero, R.O. (2007). Efecto de los campos magnéticos en la conservación de la leche cruda sin refrigerar REDVET. Revista Electrónica de Veterinaria, 7(4), 1695-7504.

Alegría, A., Delgado, S., Roces, C., López, B. & Mayo, B. (2010). Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. International Journal of Food Microbiology, 143(1-2), 61-66. https://doi.org/10.1016/j.ijfoodmicro.2010.07.029

Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Syner-gistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 99(6), 1364–1372. https://doi.org/10.1111/j.1365-2672.2005.02733.x.

Ananou, S., Muñoz, A., Gálvez, A., Martínez-Bueno, M., Maqueda, M. & Valdivia, E. (2008). Optimization of enterocin AS-48 production on a whey-based substrate. International Dairy Journal, 18(9), 923-927. https://doi.org/10.1016/j.idairyj.2008.02.001

Arqués, J. L., Rodríguez, E. & Medina, M. (2011a). Inactivation of Gram-positive patho-gens in milk by lactic acid bacteria bacteriocins in combination with the lactoperoxidasa system. Milchwissenschaft-Milk Science International, 66(3), 314-316.

Arqués, J. L., Rodríguez, E., Nuñez, M., & Medina, M. (2011b). Combined effect of reu-terin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control, 22(3-4), 457-461. https://doi.org/10.1016/j.foodcont.2010.09.027

Arqués, J. L., Rodríguez, E., Nuñez, M. & Medina, M. (2008). Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. Journal of Dairy Science, 91(1), 70-75. https://doi.org/10.3168/jds.2007-0133

Arqués, J. L., Fernández, J., Gaya, P., Nuñez, M., Rodríguez, E. & Medina, M. (2004). An-timicrobial activity of reuterin in combination with nisin against food-borne pathogens. Interna-tional Journal of Food Microbiology, 95(2), 225-229. https://doi.org/10.1016/j.ijfoodmicro.2004.03.009

Ávila, M., Gómez-Torres, N., Hernández, M. & Garde, S. (2014). Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridi-um species, International Journal of Food Microbiology, 172, 70-75. https://doi.org/10.1016/j.ijfoodmicro.2013.12.002

Azizkhani, M., Misaghi, A., Basti, A. A., Gandomi, H., & Hosseini, H. (2013). Effects of Za-taria multiflora Boiss. essential oil on growth and gene expression of enterotoxins A, C and E in Staphylococcus aureus ATCC 29213. International Journal of Food Microbiology, 163(2-3), 159-165. https://doi.org/10.1016/j.ijfoodmicro.2013.02.020

Bajpai, V. K., Yoon, J. I., Bhardwaj, M., & Kang, S. C. (2014). Anti-listerial synergism of leaf essential oil of Metasequoia glyptostroboides with nisin in whole, low and skim milks. Asian Pacific Journal of Tropical Medicine, 7(8), 602–608. https://doi.org/10.1016/S1995-7645(14)60102-4

Bernela, M., Kaur, P., Chopra, M., & Thakur, R. (2014). Synthesis, characterization of nisin loaded alginate/chitosan/pluronic composite nanoparticles and evaluation against microbes. LWT - Food Science and Technology, 59(2), 1093-1099. https://doi.org/10.1016/j.lwt.2014.05.061

Boulares, M., Mankai, M. & Hassouna, M. (2011). Effect of activating lactoperoxidase system in cheese milk on the quality of Saint-Paulin cheese. International Journal of Dairy Tech-nology, 64(1), 75-83. https://doi.org/10.1111/j.1471-0307.2010.00646.x

Bouttefroy, A. & Millière, J. B. (2000). Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. International Journal of Food Microbiology, 62(1-2), 65-75. https://doi.org/10.1016/S0168-1605(00)00372-X

Bueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphy-lococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23-27. https://doi.org/10.1016/j.ijfoodmicro.2012.06.012

Branen, J. K. & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90(1), 63-74. https://doi.org/10.1016/S0168-1605(03)00172-7.

Bernela, M., Kaur, P., Chopra, M., & Thakur, R. (2014). Synthesis, characterization of nisin loaded alginate-chitosan-pluronic composite nanoparticles and evaluation against microbes. LWT - Food Science and Technology, 59(2P1), 1093-1099. https://doi.org/10.1016/j.lwt.2014.05.061.

Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. C. (2015). Essential oils as antimicro-bials in food systems - A review. In Food Control, 54, 111-119. https://doi.org/10.1016/j.foodcont.2014.12.040

Cao-Hoang L, Chaine A, Grégoire L., & Waché Y. (2010). Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiology, 27(7), 940-944. https://doi.org/10.1016/J.FM.2010.05.025

Carter, C. D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kro-pinski, A. M., & Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2(3), 178-185. https://doi.org/10.4161/bact.22825

CDC, Centro para el control y la prevención de enfermedades de los Estados Unidos. (Jul. 16, 2021). https://www.cdc.gov/foodsafety/es/foodborne-germs-es.html

Cheigh, C. I., & Pyun, Y. R. (2005). Nisin biosynthesis and its properties. Biotechnology Letters, 27, 1641-1648. https://doi.org/10.1007/s10529-005-2721-x.

Chili, H. & Holo, H. (2018). Synergistic antimicrobial activity between the broad-spectrum bacteriocin garvicin KS and nisin, farnesol and polymyxin B against gram-positive and gram-negative bacteria. Current Microbiology, 75(3), 272–277. https://doi.org/10.1007/s00284-017-1375-y

Cintas, L. M., M. P. Casaus, C. Hérranz, I. F. & Hernández P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281-305. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT

Cobo Molinos, A., Abriouel, H., López, R. L., Valdivia, E., Omar, N. B. & Gálvez, A. (2008). Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food and Chemical Toxicology, 46(8), 2912-2921. https://doi.org/10.1016/j.fct.2008.05.035.

Coffey, B., Mills, S., Coffey, A., McAuliffe, O., & Ross, R.P. (2010). Phage and their lysins as biocontrol agents for food safety applications. Annual Review of Food Science and Technology, 1, 449–468. https://doi.org/10.1146/annurev.food.102308.124046

Cotter, P. D., Ross, R. P. & Hill, C. (2013). Bacteriocins a viable alternative to antibiotics? Nature Reviews Microbiology, 11, 95-105. https://doi.org/10.1038/nrmicro2937.

Chang, R., Lu, H., Li, M., Zhang, S., Xiong, L. & Sun, Q. (2018). Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment. Food Chemistry, 245, 756-760. https://doi.org/10.1016/j.foodchem.2017.11.116

Da Silva Sabo, S., Vitolo, M., González, J. M. D. & Oliveira, R. P. de S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527-536. https://doi.org/10.1016/j.foodres.2014.07.041

de Freire Bastos, M. D. C., Varella Coelho, M. L., & da Silva Santos, O. C. (2015). Re-sistance to bacteriocins produced by gram-positive bacteria. Microbiology, 161(4), 683–700. https://doi.org/10.1099/mic.0.082289-0

de Freire Bastos, M. do C. & Ceotto, H. (2011). Bacterial antimicrobial peptides and food preservation. CABI Publishing, En Natural Antimicrobials in Food Safety and Quality (pp. 62-76). https://doi.org/10.1079/9781845937690.0062.

Egan, K., Field, D., Rea, M. C., Ross, R. P., Hill, C., & Cotter, P. D. (2016). Bacteriocins: ¿Novel solutions to age-old spore-related problems? Frontiers in Microbiology, 7, 1-21. https://doi.org/10.3389/fmicb.2016.00461

Ehsani, A., Rezaeiyan, A., Hashemi, M., Aminzare, M., Jannat, B., & Afshari, A. (2019). Antibacterial activity and sensory properties of Heracleum persicum essential oil, nisin, and Lac-tobacillus acidophilus against Listeria monocytogenes in cheese. Veterinary World, 12(1): 90-96. https://doi.org/10.14202/vetworld.2019.90-96

Engelke, G., Z., Gutowski-Eckel, M., Hammelmann, M., & Entian K. D. (1992). Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Applied and Environmental Microbiology, 58, 3730-3743. https://doi.org/10.1128/aem.58.11.3730-3743.1992

Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Bio-synthesis, structure and activity. FEMS Microbiology Reviews, 24(1), 85-106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x

Espitia, P. J. P., De Fátima Ferreira Soares, N., Teófilo, R. F., Dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., Ferreira, S. O., Andradea, N.J., Alves, E. A., Medeiros, E. A. A. (2013). Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO na-noparticles. Carbohydrate Polymers, 94(1), 199–208. https://doi.org/10.1016/j.carbpol.2013.01.003

European Comission. (Ene. 30, 2022). Nanomaterials. https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm, a

Favaro, L., Barretto Penna, A. L. & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses - Application in biopreservation? Trends in Food Science & Technology, 41, 37-48. https://doi.org/10.1016/j.tifs.2014.09.001

Fischetti V. A. (2010). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. International Journal of Medical Microbiology, 300(6), 357-362. https://doi.org/10.1016/j.ijmm.2010.04.002

Field, D., Cotter, P. D., Ross, R. P. & Hill, C. (2015). Bioengineering of the model lantibiotic nisin. Bioengineered, 6(4), 187-192. https://doi.org/10.1080/21655979.2015.1049781

Friedman, M., Henika, PR., & Mandrell, R. E. (2002). Bactericidal activities of plant es-sential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal Food Protection, 65(10), 1545-60. https://doi.org/10.4315/0362-028X-65.10.1545

Gálvez A., López R.L., Pulido R.P., Grande Burgos M.J. (2014). Natural Antimicrobials for Food Biopreservation. Springer-Verlag, En: Food Biopreservation. SpringerBriefs in Food, Health, and Nutrition. (pp. 3-14). Springer, New York. https://doi.org/10.1007/978-1-4939-2029-7_2
Gálvez, A., Maqueda, M., Martínez-Bueno, M., Valdivia, E. (1989a). Acción bactericida y bacteriolítica del antibiótico peptídico AS-48 contra bacterias Gram positivas, Gram negativas y otros organismos. Research in Microbiology, 140 (1), 57–68. https://doi.org/10.1016/0923-2508(89)90060-0
Gálvez, A.; Valdivia, E.; Martínez, M.; Maqueda, M. (1989b). Bactericidal action of peptide antibiotic AS-48 against Escherichia coli K-12. Canadian Journal of Microbiology, 35, 318-321. https://doi.org/10.1139/m89-048

Gänzle, M. G. (2004). Reutericyclin: biological activity, mode of action, and potential applications. Applied Microbiology and Biotechnology, 64(3), 326-332. https://doi.org/10.1007/s00253-003-1536-8

Gänzle, M. G. & Vogel, R. F. (2003). Studies on the mode of action of reutericyclin. Ap-plied and Environmental Microbiology, 69(2), 1305-1307. https://doi.org/10.1128/AEM.69.2.1305-1307.2003

Gänzle, M. G., Höltzel, A., Walter, J., Jung, G. & Hammes, W. P. (2000). Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbi-ology, 66(10), 4325-4333. https://doi.org/10.1128/AEM.66.10.4325-4333.2000

Gómez-López, V. M., Ragaert, P., Debevere, J. & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science and Technology, 18(9), 464-473. https://doi.org/10.1016/j.tifs.2007.03.010

González, L., Sandoval, H., Sacristán, N., Castro, J. M., Fresno, J. M. & Tornadijo, M. E. (2007). Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, 18(6), 716-722. https://doi.org/10.1016/j.foodcont.2006.03.008

Grande Burgos, M., Pulido, R., del Carmen López Aguayo, M., Gálvez, A. & Lucas, R. (2014). The cyclic antibacterial peptide enterocin as-48: isolation, mode of action, and possible food applications. International Journal of Molecular Sciences, 15(12), 22706-22727. https://doi.org/10.3390/ijms151222706

Gratia, A. (1925). Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. Société de Biologie, 93, 1040-1041.

Heinrich, V., Zunabovic, M., Bergmair, J., Kneifel, W. & Jäger, H. (2015). Post-packaging application of pulsed light for microbial decontamination of solid foods: A review. Innovative Food Science and Emerging Technologies, 30, 145-156. https://doi.org/10.1016/j.ifset.2015.06.005

Heng N.C.K., Wescombe P.A., Burton J.P., Jack R.W. & Tagg J.R. (2007) The Diversity of Bacteriocins in Gram-Positive Bacteria. In: Riley M.A., Chavan M.A. (eds) Bacteriocins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36604-1_4

Herrera Barros, A.P., Acevedo Morantes, M.T., Castro Hoyos, M.I. & Marrugo Ospino, L.J. (2016). Preparación de nanopartículas de quitosano modificadas con alginato de sodio con potencial para la liberación controlada de medicamentos. Revista EIA, 12(E3), 75-83. https://doi.org/10.24050/reia.v12i2.965

Ibarra-Sánchez, L. A., El-Haddad, N., Mahmoud, D., Miller, M. J. & Karam, L. (2020). Invited review: Advances in nisin use for preservation of dairy products. Journal of Dairy Science. 103(3), 2041-2052. https://doi.org/10.3168/jds.2019-17498.

INS, Instituto Nacional de Salud de Colombia (Feb. 2, 2021). Informe de evento enfer-medades transmitidas por alimentos, Colombia, 2017. https://www.ins.gov.co/buscador-even-tos/Informesdeevento/ENFERMEDADES%20TRANSMITIDAS%20POR%20ALIMENTOS%20PE%20XII%202021.pdf, accesado el 4 de febrero del 2022

Jorquera, D., Navarro, C., Rojas, V., Turra, G., Robeson, J. & Borie, C. (2015). The use of a bacteriophage cocktail as a biocontrol measure to reduce Salmonella enterica serovar enteritidis contamination in ground meat and goat cheese. Biocontrol Science and Technology, 25(8), 970-974. https://doi.org/10.1080/09583157.2015.1018815

Kantono, K., Hamid, N., Oey, I., Wang, S., Xu, Y., Ma, Q., Faridnia, F. & Farouk, M. (2019). Physicochemical and sensory properties of beef muscles after pulsed electric field processing. Food research international, 121, 1-11. https://doi.org/10.1016/j.foodres.2019.03.020

Kaur, G., Singh, T. P. & Malik, R. K. (2013). Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives. Brazilian Journal of Microbiology, 44(1), 63–71. https://doi.org/10.1590/S1517-83822013005000025

Kavas, G., Kavas, N. & Saygili, D. (2015). The effects of thyme and clove essential oil for-tified edible films on the physical, chemical and microbiological characteristics of kashar cheese, Journal of Food Quality, 38, 405-412. https://doi.org/10.1111/jfq.12157

Kazi, M. & Annapure, U. S. (2016). Bacteriophage biocontrol of foodborne pathogens. Journal of Food Science and Technology, 53, 1355-1362 https://doi.org/10.1007/s13197-015-1996-8

Khorshidian, N., Yousefi, M., Khanniri, E. & Mortazavian, A. M. (2017). Potential applica-tion of essential oils as antimicrobial preservatives in cheese. Innovative Food Science & Emerging Technologies, 45, 62-72 https://doi.org/10.1016/j.ifset.2017.09.020

Komora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R. S., Saraiva, J. M. A., Castro, S. M. & Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Micro-biology, 86, 103315. https://doi.org/10.1016/J.FM.2019.103315

Langa, S., Martín-Cabrejas, I., Montiel, R., Landete, J. M., Medina, M. & Arqués, J. L. (2014). Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. Journal of Dairy Science, 97(10), 6116-21. https://doi.org/10.3168/jds.2014-8306

Leverentz, B., Conway, WS, Camp, MJ, Janisiewicz, WJ, Abuladze, T., Yang, M., Saftner, R. & Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69(8), 4519–4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003

Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeu-tics, 8(3), 162. https://doi.org/10.4292/wjgpt.v8.i3.162

Lin, X. B., Lohans, C. T., Duar, R., Zheng, J., Vederas, J. C., Walter, J. & Gänzle, M. (2015). Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Applied and Environ-mental Microbiology, 81(6), 2032-2041. https://doi.org/10.1128/AEM.03691-14

Lopes, N. A., Barreto Pinilla, C. M. & Brandelli, A. (2019). Antimicrobial activity of lyso-zyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9. https://doi.org/10.1016/j.foodhyd.2019.02.009

López-Pedemonte, T. J., Roig-Sagués, A. X., Trujillo, A. J., Capellas, M. & Guamis, B. (2003). Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. Journal of Dairy Science, 86(10), 3075-3081. https://doi.org/10.3168/JDS.S0022-0302(03)73907-1

Macwana, S. & Muriana, P. M. (2012). Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria. Journal of Microbiological Methods, 88(1), 7–13. https://doi.org/10.1016/j.mimet.2011.09.009

Martínez, B., García, P. & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 56, 1-6. https://doi.org/10.1016/j.copbio.2018.07.007

Martínez-Bueno, M., Valdivia, E., Gálvez, A., Coyette, J. & Maqueda, M. (1998). Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in En-terococcus faecalis. Molecular microbiology, 27,347–358. https://doi.org/10.1046/j.1365-2958.1998.00682.x

Mirhosseini, M. & Afzali, M. (2016). Investigation into the antibacterial behavior of sus-pensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control, 68, 208-215. https://doi.org/10.1016/j.foodcont.2016.03.048.

Montiel, R., Martín-Cabrejas, I. & Medina, M. (2015). Reuterin, lactoperoxidase, lac-toferrin and high hydrostatic pressure onthe inactivation of food-borne pathogens in cooked ham. Food Control, 51, 122-128. https://doi.org/10.1016/j.foodcont.2014.11.010

Moosavy, M. H., Basti, A. A., Misaghi, A., Salehi, T. Z., Abbasifar, R., Mousavi, H. A. E., Alipour, M., Razavi, N. E., Gandomi, H. & Noori, N. (2008). Effect of Zataria multiflora Boiss. es-sential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10), 1050-1057. https://doi.org/10.1016/J.FOODRES.2008.07.018

Muñoz, A., Ananou, S., Gálvez, A., Martínez-Bueno, M., Rodríguez, A., Maqueda, M. & Valdivia, E. (2007). Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. International Dairy Journal, 17(7), 760-769. https://doi.org/10.1016/j.idairyj.2006.09.006

Muñoz, A., Maqueda, M., Gálvez, A., Martínez-Bueno, M., Rodríguez, A. & Valdivia, E. (2004). Control of psychrotrophic enterotoxicogenic B. cereus in manchego type cheese by an enterococcal strain producing enterocin AS-48. Journal of Food Protection, 67(7), 1517-1521. https://doi.org/10.4315/0362-028X-67.7.1517

Naskar, A. & Kim, K-s (2021). Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics, 13 (1), 86. https://doi.org/10.3390/pharmaceutics13010086

Nieto-Lozano, J. C., Reguera-Useros, J. I., Peláez-Martínez, M. del C., Sacristán-Pérez-Minayo, G., Gutiérrez-Fernández, Á. J. & la Torre, A. H. de. (2010). The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control, 21(5), 679–685. https://doi.org/10.1016/j.foodcont.2009.10.007

O’Flynn, G., Ross, RP., Fitzgerald, GF. & Coffey, A. (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7. Applied and Environmental Microbiology, 70(6), 3417-3424. https://doi.org/10.1128/AEM.70.6.3417-3424.2004

O'Sullivan, L., Ross R. P. & Hill, C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84, 593-604. https://doi.org/10.1016/S0300-9084(02)01457-8

Pagán, R., Mañas, P., Alvarez, I. & Condón, S. (1999). Resistance of Listeria monocyto-genes to ultrasonic waves under pressure at sublethal (Manosonication) and lethal (Manother-mosonication) temperatures. Food Microbiology, 16, 139-148. https://doi.org/10.1006/fmic.1998.0231

OPS, Organización Panamericana de la Salud (feb. 2, 2022). Enfermedades transmitidas por alimentos. https://www.paho.org/es/temas/enfermedades-transmitidas-por-alimentos

Parsaeimehr, M., Basti, A.A., Radmehr, B., Misaghi, A., Abbasifar, A., Karim, G., Rokni N., Motlagh, M.S., Gandomi, H., Noori, N. & Khanjari, A. (2010). Effect of Zataria multiflora Boiss essential oil, nisin, and their combination on the production of enterotoxin C and α-hemolysin by Staphylococcus aureus. Foodborne Pathogens and Disease, 7, 299-305. https://doi.org/10.1089/fpd.2009.0416

Pérez-Pulido, R., Grande Burgos, M. J., Gálvez, A. & Lucas López, R. (2016). Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Critical reviews in biotechnology, 36(5), 851-861. https://doi.org/10.3109/07388551.2015.1049935

Pérez-Pulido, R., Toledo, J., Grande, M. J., Gálvez, A. & Lucas, R. (2015). Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, 196, 62-69. https://doi.org/10.1016/j.ijfoodmicro.2014.11.033

Pimentel-Filho, N. de J., Mantovani, H. C., de Carvalho, A. F., Dias, R. S. & Vanetti, M. C. D. (2014). Efficacy of bovicin HC5 and nisin combination against Listeria monocytogenes and Staphylococcus aureus in fresh cheese. International Journal of Food Science and Technology, 49(2), 416-422. https://doi.org/10.1111/ijfs.12316

Preciado, G. M., Michel, M. M., Villarreal-Morales, S. L., Flores-Gallegos, A. C., Aguirre-Joya, J., Morlett-Chávez, J., Aguilar C. N., Rodríguez-Herrera, R. (2016). Bacteriocins and Its use for multidrug-resistant Bacteria. En Academic Press. Antibiotic resistance: mechanisms and New antimicrobial Approaches. (pp. 329-349). https://doi.org/10.1016/B978-0-12-803642-6.00016-2

Raghunath, A. & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137-152. https://doi.org/10.1016/j.ijantimicag.2016.11.011.
Rehaiem, A., Martínez, B., Manai, M., & Rodríguez, A. (2010). Production of enterocin A by En-terococcus faecium MMRA isolated from “Rayeb”, a traditional Tunisian dairy beverage. Journal of Applied Microbiology, 108(5), 1685-1693. https://doi.org/10.1111/j.1365-2672.2009.04565.x

Rodríguez-Rubio, L., Martínez, B., Donovan, D. M., Rodríguez, A. & García, P. (2013). Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. Critical Reviews in Microbiology, 39(4), 427-434. https://doi.org/10.3109/1040841X.2012.723675

Rodríguez, E., Calzada, J., Arqués, J. L., Rodríguez, J. M., Nuñez, M. & Medina, M. (2005). Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. International Dairy Journal, 15(1), 51-57. https://doi.org/10.1016/j.idairyj.2004.05.004.

Rodriguez, E., Arques, J. L., Nuñez, M., Gaya, P., & Medina, M. (2005). Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Applied and Environmental Microbiology, 71(7), 3399-3404. https://doi.org/10.1128/AEM.71.7.3399-3404.2005

Rodríguez, J. M., Martínez, M. I. & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacte-riocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475.

Salgado, P. R., Di Giorgio, L., Musso, Y. S. & Mauri, A. N. (2019). Bioactive Packaging: combining nanotechnologies with packaging for improved food functionality. En Micro and nano technologies, nanomaterials for food applications (pp. 233–270). https://doi.org/10.1016/B978-0-12-814130-4.00009-9

Sánchez-Hidalgo, M., Montalbán-López, M., Cebrián, R., Valdivia, E., Martínez-Bueno, M. & Maqueda, M. (2011). AS-48 bacteriocin: Close to perfection. In Cellular and Molecular Life Sciences. 68, 2845-2857. https://doi.org/10.1007/s00018-011-0724-4

Santos, J. C. P., Sousa, R. C. S., Otoni, C. G., Moraes, A. R. F., Souza, V. G. L., Medeiros, E. A. A., Espitia, J.P., Pires, A.C., Coimbra, J.S. & Soares, N. F. F. (2018). Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies, 48, 174-194. https://doi.org/10.1016/j.ifset.2018.06.00

Schirru, S., Todorov, S. D., Favaro, L., Mangia, N. P., Basaglia, M., Casella, S. & Deiana, P. (2012). Sardinian goat’s milk as source of bacteriocinogenic potential protective cultures. Food Control, 25(1), 309–320. https://doi.org/10.1016/j.foodcont.2011.10.060.

Seifu, E., Buys, E. M. & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends in Food Science and Technology, 16(4), 37-154. https://doi.org/10.1016/j.tifs.2004.11.002

Silva, F. V. M. & Gibbs, P. A. (2012). Thermal pasteurization requirements for the inacti-vation of Salmonella in foods. Food Research International, 45(2), 695-699. https://doi.org/10.1016/j.foodres.2011.06.018

Son, HM., Duc, HM., Masuda, Y., Honjoh, K.I. & Miyamoto, T. (2018). Application of bac-teriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Applied Microbiology and Biotechnology. 102(23), 10259-10271. https://doi.org/10.1007/s00253-018-9399-1

Tabla, R., Martínez, B., Rebollo, J.E., González, J., Ramírez, M.R., Roa, I., Rodríguez, A. & García, P. (2012). Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. International Journal Food Microbiology, 156(3), 209-213. https://doi.org/10.1016/j.ijfoodmicro.2012.03.023

Tauxe, R. V. (2001). Food safety and irradiation: Protecting the public from foodborne infections. Emerging Infectious Diseases, 7, 516-521. https://doi.org/10.3201/eid0707.017706.

Téllez-Luis, S. J., Ramírez, J. A., Pérez-Lamela, C., Vázquez, M. & Simal-Gándara, J. (2001). Aplicación de la alta presión hidrostática en la conservación de los alimentos. Ciencia y Tecnología Alimentaria, 3(2), 66-80. https://doi.org/10.1080/11358120109487649


Todorov, S. D. (2019). What Bacteriocinogenic Lactic Acid Bacteria Do in the Milk? En: Academic Press, Raw Milk: Balance Between Hazards and Benefits. (pp. 149–174). Elsevier. https://doi.org/10.1016/b978-0-12-810530-6.00008-0.

Tulini, F. L., Gomes, B. C. & De Martinis, E. C. P., (2011). Partial purification and charac-terization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência e Tecnologia de Alimentos, 31(1), 155-159. https://doi.org/10.1590/S0101-20612011000100022

Van Tassell, M. L., Ibarra-Sánchez, L. A., Hoepker, G. P. & Miller, M. J. (2017). Hot topic: Antilisterial activity by endolysin PlyP100 in fresh cheese, Journal of Dairy Science, 100(4), 2482-2487. https://doi.org/10.3168/jds.2016-11990.

WHO. World Health Organization (Ene. 30, 2022). WHO’s first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths. https://www.who.int/es/news-room/detail/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths

Wirawan, R. E., Klesse, N. A., Jack, R. W. & Tagg, J. R. (2006). Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Applied and Environ-mental Microbiology, 72(2), 1148-1156. https://doi.org/10.1128/AEM.72.2.1148-1156.2006

Yildirim, Z., Bilgin, H., Isleroglu, H., Tokatli, K., Sahingil, D. & Yildirim, M. (2014). Enterocin HZ produced by a wild Enterococcus faecium strain isolated from a traditional, starter-free pickled cheese. The Journal of dairy research, 81(2), 164-72. https://doi.org/10.1017/S0022029914000016

Zacharof, M. P., Coss, G. M., Mandale, S. J. & Lovitt, R. W. (2013). Separation of lactobacilli bacteriocins from fermented broths using membranes. Process Biochemistry, 48(8), 1252-1261. https://doi.org/10.1016/j.procbio.2013.05.017.

Zhao, X., Shi, C., Meng, R., Liu, Z., Huang, Y., Zhao, Z. & Guo N. (2016). Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. Journal of Food Science and Technology, 53(6), 2644-2653. https://doi.org/10.1007/S13197-016-2236-6

Zohri, M., Alavidjeh, M. S., Haririan, I., Ardestani, M. S., Ebrahimi, S. E. S., Sani, H. T. & Sadjadi, S. K. (2010). A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pas-teurized milk samples. Probiotics and Antimicrobial Proteins, 2(4), 258–266. https://doi.org/10.1007/s12602-010-9047-2

Zhou, H., Fang, J., Tian, Y. & Lu, X. Y. (2014). Mechanisms of nisin resistance in Gram-positive bacteria. Annals of Microbiology, 64, 413-420. https://doi.org/10.1007/s13213-013-0679-9.




Descargas

Los datos de descargas todavía no están disponibles.

Citado por

Sistema OJS - Metabiblioteca |