
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
Las microalgas, microorganismos fotosintéticos fundamentales en los ecosistemas acuáticos, destacan por su capacidad de realizar fotosíntesis oxigénica, equilibrar el oxígeno y promover el flujo energético. Su rápido crecimiento, alta adaptabilidad, elevado contenido lipídico y capacidad de fijar carbono han despertado un interés creciente en las últimas décadas, con la identificación de cerca de 100,000 especies distribuidas globalmente. Históricamente han sido utilizadas como alimento y en aplicaciones terapéuticas desde hace más de 2000 años. Actualmente se reconocen como fuentes de compuestos bioactivos, incluyendo ácidos grasos poliinsaturados, carotenoides y vitaminas, con amplias aplicaciones en las industrias alimenticia, cosmética, energética y de salud. Este estudio revisó 53 artículos indexados en Scopus y Publindex publicados entre el 2012 y el 2024, clasificando las aplicaciones de las microalgas en la industria química colombiana en áreas como farmacéutica, biofertilizantes, biorremediación, nutrición y biocombustibles. Se identificaron las clases Chlorophyceae, Trebouxiophyceae y Cyanophyceae como las más estudiadas, especialmente los géneros Scenedesmus sp., Chlorella sp. y Arthrospira sp. Las principales aplicaciones se concentran en la biorremediación de aguas y la producción de biocombustibles, destacando los departamentos de Antioquia y Norte de Santander como los más relevantes. Finalmente, se subraya la necesidad de profundizar en estudios a nivel de especie y avanzar en investigaciones bajo condiciones de campo. También se resalta la importancia de fortalecer áreas como las aplicaciones farmacéuticas y biomédicas, biofertilizantes y nutrición humana y animal, para maximizar el potencial de las microalgas en el contexto de la alta biodiversidad colombiana.
Citas
Acosta, E. J., Rodríguez‐Forero, A., Werding, B., & Kunzmann, A. (2021). Effect of density, temperature and diet on the growth, survival and development of larvae and juveniles of Isostichopus sp. Aquaculture Research, 52(2), 611-624. https://doi.org/10.1111/are.14918
Agwa, O. K., Ogugbue, C. J., & Williams, E. E. (2017). Field Evidence of Chlorella vulgaris Potentials as a Biofertilizer for Hibiscus esculentus. International Journal of Agri-cultural Research, 12, 181-189. https://doi.org/10.3923/ijar.2017.181.189
Alvarez, P., Pérez, L., Salgueiro, J. L., Cancela, A., Sánchez, Á., & Ortiz, L. (2017). Bioenergy use from Pavlova lutheri microalgae. International Journal of Environmental Research, 11, 281-289. https://doi.org/10.1007/s41742-017-0026-2
Anand, V., Kashyap, M., Ghosh, A., Samadhiya, K., & Kiran, B. (2021). A strategy for lipid production in Scenedesmus sp. by multiple stresses induction. Biomass Conver-sion and Biorefinery, 1-11. https://doi.org/10.1007/s13399-021-01392-2
Angulo M, E., Castellar O, G., Cely B, M. M., Ibáñez S, L., & Prasca M, L. (2017). Discoloration of wastewater from a paint industry by the microalgae Chlorella sp. Revista MVZ Córdoba, 22(1), 5706-5717. https://doi.org/10.21897/rmvz.930
Arahou, F., Hassikou, R., Arahou, M., Rhazi, L., & Wahby, I. (2021). Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquaculture International, 29(5), 2009-2020. https://doi.org/10.1007/s10499-021-00730-5
Aranguren Díaz, Y., Monterroza Martínez, E., Carillo García, L., Serrano, M. C., & Machado Sierra, E. (2022). Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia. Resources, 11(2), 15. https://doi.org/10.3390/resources11020015
Ardila, L., Godoy, R., & Montenegro, L. (2017). Sorption capacity measurement of Chlorella vulgaris and Scenedesmus acutus to remove chromium from tannery wastewater. In IOP Conference Series: Earth and Environmental Science (Vol. 83, No. 1, p. 012031). IOP Publishing. https://doi.org/10.1088/1755-1315/83/1/012031
Ardila-Álvarez, A. M., López-Matos, Y., Vásquez-Cáceres, M. E., González-Delgado, Á. D., & Barajas-Solano, A. F. (2017). Obtaining lipids and carbohydrates from microalgae via design of selective culture media. TecnoLógicas, 20(38), 83-94. https://doi.org/10.22430/22565337.581
Arif, M., Bai, Y., Usman, M., Jalalah, M., Harraz, F. A., Al-Assiri, M. S., ... & Zhang, C. (2020). Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: role of lipidomics. Bioresource tech-nology, 298, 122299. https://doi.org/10.1016/j.biortech.2019.122299
Baldiris, I., Sánchez, J., González, A., Realpe, A., Acevedo, A. (2018). Removal and biodegradation of phenol by the freshwater microalgae Chlorella vulgaris. Contem-porary Engineering Sciences, 11, 1941 -1970. https://doi.org/10.12988/ces.2018.84201
Bermúdez, S., & Miguel, L. (2012). Estudio de cuatro cepas nativas de microal-gas para evaluar su potencial uso en la producción de biodiesel (Doctoral dissertation). https://repositorio.unal.edu.co/handle/unal/10636
Bileva, T. (2013). Influence of green algae Chlorella vulgaris on infested with xiphinema index grape seedlings. Journal Earth Science & Climatic Change, 4(2), 136. https://doi.org/10.4172/2157-7617.1000136
Burja, A. M., & Radianingtyas, H. (2008). Nutraceuticals and functional foods from marine microbes: an introduction to a diverse group of natural products isolated from marine macroalgae, microalgae, bacteria, fungi, and cyanobacteria. In Marine nutraceuticals and functional foods (pp. 367-403). https://doi.org/10.1201/9781420015812.ch15
Calderón, N. D. G., Bayona, K. C. D., & Garcés, L. A. (2018). Immobilization of the green microalga Botryococcus braunii in polyester wadding: effect on biomass, fatty acids, and exopolysaccharide production. Biocatalysis and Agricultural Biotechnology, 14, 80-87. https://doi.org/10.1016/j.bcab.2018.02.006
Carrera, S., Velazco, L., & Barreto-Hernandez, A. (2018). Potential of benthic microalgae of the Caribbean sea as food in mariculture. Revista De Biologia Marina Y Oceanografia, 53(3), 321-333. https://doi.org/10.22370/rbmo.2018.53.3.1357
Castro, M. J., Castro, M. G., Flores, G. A. F., Tinoco, L. P. I., & Salvat, N. K. A. (2023). Artemia sp. biomass production using three different microalgae (Pinnularia sp., Porphyridium sp., and Dunaliella sp.) with yeast supply. International Journal of Fisheries and Aquatic Studies, 11, Issue 5, Part C. https://doi.org/10.22271/fish.2023.v11.i5c.2864
Canini, D., Ceschi, E., & Perozeni, F. (2024). Toward the Exploitation of Sustaina-ble Green Factory: Biotechnology Use of Nannochloropsis spp. Biology, 13(5), 292. https://doi.org/10.3390/biology13050292
Chen, J., Wang, Y., Benemann, J. R., Zhang, X., Hu, H., & Qin, S. (2016). Microal-gal industry in China: challenges and prospects. Journal of applied phycology, 28, 715-725. https://doi.org/10.1007/s10811-015-0720-4
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Colorado-Gómez, M. A., & Moreno-Tirado, D. A. (2017). Economía de recursos naturales a partir de la producción de Spirulina (Arthrospira maxima) en fotobiorreacto-res, La Guajira, Colombia. Reto, 5, 50-59. https://revistas.sena.edu.co/index.php/RETO/article/view/1410
Correa, D. F., Beyer, H. L., Possingham, H. P., García-Ulloa, J., Ghazoul, J., & Schenk, P. M. (2020). Freeing land from biofuel production through microalgal cultiva-tion in the Neotropical region. Environmental Research Letters, 15(9), 094094. https://doi.org/10.1088/1748-9326/ab8d7f
Dammak, M., Ben Hlima, H., Fendri, I., Smaoui, S., & Abdelkafi, S. (2024). T etra-selmis species for environmental sustainability: biology, water bioremediation, and biofuel production. Environmental Science and Pollution Research, 31(36), 48864-48887. https://doi.org/10.1007/s11356-024-34247-0
De Lima, J. F., Tonini, J., & Ferreira-Camargo, L. S. (2022, November). Scenedes-mus sp. Cultivation in a Synthetic Fertilizer-Based Culture Media: Biomass’ Lipids and Proteins Profile. In Interdisciplinary Conference on Innovation, Desgin, Entrepreneur-ship, And Sustainable Systems (pp. 162-171). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-29129-6_15
Delgado Tejera, C. (2020). Uso de microalgas en la industria farmacéutica. https://riull.ull.es/xmlui/handle/915/21691
Devia Torres, D., Cáceres Sepúlveda, S., Roa, A. L., Suárez Gelvez, J. H., & Urbina Suárez, N. A. (2017). Utilización de microalgas de la división Chlorophyta en el trata-miento biológico de drenajes ácidos de minas de carbón. Revista Colombiana de Biotec-nología, 19(2), 95-104. https://doi.org/10.15446/rev.colomb.biote.v19n2.70429
Duque, J. L. R. (2017). Viabilidad en la producción de biomasa microalgal a par-tir de fotobioreactores solares en el Valle del Cauca, Colombia. Revista de Investigación Agraria y Ambiental, 8(2), 127-140. https://doi.org/10.22490/21456453.2039
Emtyazjoo, M., Moghadasi, Z., Rabbani, M., Emtyazjoo, M., Samadi, S., & Mossaf-fa, N. (2012). Anticancer effect of Dunaliella salina under stress and normal conditions against skin carcinoma cell line A431 in vitro. Iranian Journal of Fisheries Sciences, 11(2), 283-293. http://jifro.ir/article-1-527-en.html
Fernandes, T., & Cordeiro, N. (2022). High-value lipids accumulation by Pavlova pinguis as a response to nitrogen-induced changes. Biomass and Bioenergy, 158, 106341. https://doi.org/10.1016/j.biombioe.2022.106341
Gallego-Cartagena, E., Castillo-Ramírez, M., & Martínez-Burgos, W. (2019). Ef-fect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunal-iella salina. Saudi Journal of Biological Sciences, 26(7), 1325-1330. https://doi.org/10.1016/j.sjbs.2019.07.010
García, K. L. Q., Zúñiga, D. P. R., Duque, M. E. G., & Rojas, J. A. A. (2021). Evalua-ción de la remoción de nitrógeno y materia orgánica a través de humedales artificiales de flujo subsuperficial, acoplados a reactores de lecho fijo con microalgas en la Institu-ción Universitaria Colegio Mayor de Antioquia. Ingeniería y Región, 25, 82-94. https://doi.org/10.25054/22161325.2921
Gentscheva, G., Nikolova, K., Panayotova, V., Peycheva, K., Makedonski, L., Slavov, P., ... & Yotkovska, I. (2023). Application of Arthrospira platensis for medicinal purposes and the food industry: a review of the literature. Life, 13(3), 845. https://doi.org/10.3390/life13030845
Gissibl, A., Sun, A., Care, A., Nevalainen, H., & Sunna, A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Frontiers in bioengineering and bio-technology, 7, 108. https://doi.org/10.3389/fbioe.2019.00108
Gómez Ramírez, B. D., Sepúlveda Valencia, J. U., Alzate Arbelaez, A. F., Herrera, J. M., & Rojano, B. A. (2020). Evaluación oxidativa, microbiológica, sensorial y perfil de ácidos grasos de un yogur con ácido docosahexaenoico (DHA) extraído de aceite de microalgas. Revista Chilena de Nutrición, 47(4), 568-579. http://dx.doi.org/10.4067/S0717-75182020000400568
Guarin-Villegas, E., Remolina-Páez, L. M., Bermúdez-Castro, J. P., Mogollón-Londoño, S. O., Contreras-Ropero, J. E., García-Martínez, J. B., & Barajas-Solano, A. F. (2020). Effect of carbon/Nitrogen ratio on the production of microalgae-based carote-noids. Ingeniería y competitividad, 22(1). https://doi.org/10.25100/iyc.v22vi1i.8686
Guiry, M. D., Guiry, G. M., Morrison, L., Rindi, F., Miranda, S. V., Mathieson, A. C., ... & Garbary, D. J. (2014). AlgaeBase: an on-line resource for algae. Cryptogamie, Algo-logie, 35(2), 105-115. https://doi.org/10.7872/crya.v35.iss2.2014.105
Gutiérrez, J. E., Gutiérrez‐Hoyos, N., Gutiérrez Benedetti, J. S., Vives, M. J., & Si-vasubramanian, V. (2022a). Clarification of cyanotoxins in El Guajaro Reservoir, Colombia using a microalgae‐based consortium MPMC. Journal of Chemical Technology & Biotech-nology, 97(6), 1468-1481. https://doi.org/10.1002/jctb.7016
Gutiérrez, J. E., Gutiérrez-Hoyos, N., Gutiérrez, J. S., Vives, M. J., & Sivasubrama-nian, V. (2022b). Bioremediation of a sewage-contaminated tropical swamp through bioaugmentation with a microalgae-predominant microbial consortium. Indian Journal of Microbiology, 62(2), 307-311. https://doi.org/10.1007/s12088-021-00990-y
Gutiérrez-Hoyos, N., Sánchez, C., & Gutiérrez, J. E. (2023). Variation in phyto-plankton diversity during phycoremediation in a polluted Colombian Caribbean swamp. Environmental Monitoring and Assessment, 195(2), 327. https://doi.org/10.1007/s10661-022-10843-w
Gutiérrez, M. F. P., Romero, G. A. J., Barros, A. D., & Ruiz, J. R. (2017). Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos. Revista Mutis, 7(2), 75-80. https://doi.org/10.21789/22561498.1246
Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Re-vista de biología marina y oceanografía, 49(2), 157-173. http://dx.doi.org/10.4067/S0718-19572014000200001.
Hernández, Y., Pérez, A., Vitola., D. (2018). Biosorption of Mercury and Nickel in Vitro by Microalga Chlorella sp. in Solution and Immobilized in Dry Fruit of Squash (Luffa Cylindrica). Indian Journal of Science and Technology, 11 (41), 1-7. https://doi.org/10.17485/ijst/2018/v11i41/131111
Herrera, M. C., y León, S. V., Tolentino, R. G., Fernández, B. G., & González, G. D. (2006). Los ácidos grasos omega-3 y omega-6: nutrición, bioquímica y salud. Revista de educación bioquímica, 25(3), 72-79. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=40260
Hurtado, D. X., Garzón‐Castro, C. L., Cortés‐Romero, J., & Tello, E. (2019). Using different wavelengths and irradiance on the microalgae Acutodesmus obliquus batch culture. Journal of Chemical Technology & Biotechnology, 94(7), 2141-2147. ttp://hdl.handle.net/10818/48375
Infante, C., León, I., Florez, J., Zárate, A., Barrios, F., & Zapata, C. (2013). Removal of ammonium and phosphate ions from wastewater samples by immobilized Chlorella sp. International journal of environmental studies, 70(1), 1-7. https://doi.org/10.1080/00207233.2012.742643
Jaimes-Duarte, D. L., Soler-Mendoza, W., Velasco-Mendoza, J., Muñoz-Peñaloza, Y., & Urbina-Suárez, N. A. (2012). Characterization Chlorophytas microalgae with poten-tial in the production of lipids for biofuels. CT&F-Ciencia, Tecnología y Futuro, 5(1), 93-102. https://doi.org/10.29047/issn.0122-5383
Jiménez-Bambague, E. M., Madera-Parra, C. A., Ortiz-Escobar, A. C., Morales-Acosta, P. A., Peña-Salamanca, E. J., & Machuca-Martínez, F. (2020). High-rate algal pond for removal of pharmaceutical compounds from urban domestic wastewater under tropical conditions. Case study: Santiago de Cali, Colombia. Water Science and Technolo-gy, 82(6), 1031-1043. https://doi.org/10.2166/wst.2020.362
Jiménez‐Bambague, E. M., Florez‐Castillo, J. S., Gómez‐Angulo, R. D., Morales‐Acosta, P. A., Peña‐Salamanca, E. J., Machuca‐Martínez, F., & Madera‐Parra, C. A. (2022). Cell growth and removal capacity of ibuprofen and diclofenac by Parachlorella kessleri at bench scale. Journal of Chemical Technology & Biotechnology, 97(6), 1416-1423. https://doi.org/10.1002/jctb.6911
Kang, S., Realff, M. J., Yuan, Y., Chance, R., & Lee, J. H. (2022). Global evaluation of economics of microalgae-based biofuel supply chain using GIS-based framework. Korean Journal of Chemical Engineering, 39(6), 1524-1541. https://doi.org/10.1007/s11814-021-1053-4
Kim, M. J., Shim, C. K., Kim, Y. K., Park, J. H., Hong, S. J., Ji, H. J., ... & Yoon, J. C. (2014). Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Horticultural Science & Technology, 32(6), 872-878. https://doi.org/10.7235/hort.2014.14107
Kulikova, N. N., Volkova, E. A., Bondarenko, N. A., Chebykin, E. P., Saibatalova, E. V., Timoshkin, O. A., & Suturin, A. N. (2018). Element composition and biogeochemical functions of algae Ulothrix zonata (F. Weber et Mohr) Kützing in the coastal zone of the Southern Baikal. Water Resources, 45, 908-919. https://doi.org/10.1134/S0097807818060106
Kumar, M. A. H. E. E. P. (2014). Harvesting of valuable eno-and exo-metabolites form cyanobacteria: a potential source. Asian Journal of Pharmaceutical and Clinical Research, 7, 24-28. https://journals.innovareacademics.in/index.php/ajpcr/article/view/858.
Leal Medina, G. I., Abril Bonett, J. E., Martínez Gélvez, S. J., Muñoz Peñaloza, Y. A., Peñaranda Lizarazo, E. M., & Urbina Suárez, N. A. (2017). Producción de ácidos gra-sos poliinsaturados a partir de biomasa microalgal en un cultivo heterotrófico. Revista Ion, 30(1), 91-103. https://doi.org/10.18273/revion.v30n1-2017007
Lihanová, D., Lukáčová, A., Beck, T., Jedlička, A., Vešelényiová, D., Krajčovič, J., & Vesteg, M. (2023). Versatile biotechnological applications of Euglena gracilis. World Journal of Microbiology and Biotechnology, 39(5), 133. https://doi.org/10.1007/s11274-023-03585-5
Liu, J., & Chen, F. (2016). Biology and industrial applications of Chlorella: ad-vances and prospects. Microalgae biotechnology, 1-35. https://doi.org/10.1007/10_2014_286
Luna, L. M. G. (2007). Microalgas: Aspectos ecológicos y biotecnológicos. Revis-ta cubana de química, 19(2), 3-20. https://www.redalyc.org/articulo.oa?id=443543707001
Ma, X. N., Chen, T. P., Yang, B., Liu, J., & Chen, F. (2016). Lipid production from Nannochloropsis. Marine drugs, 14(4), 61. https://doi.org/10.3390/md14040061
Machado Sierra, E., Serrano, M. C., Manares, A., Guerra, A., & Aranguren Díaz, Y. (2021). Microalgae: Potential for bioeconomy in food systems. Applied Sciences, 11(23), 11316. https://doi.org/10.3390/app112311316
Matos, J., Cardoso, C., Gomes, A., Campos, A. M., Falé, P., Afonso, C., & Banda-rra, N. M. (2019). Bioprospection of Isochrysis galbana and its potential as a nutraceuti-cal. Food & function, 10(11), 7333-7342. https://doi.org/10.1039/C9FO01364D.
Mehariya, S., Annamalai, S. N., Thaher, M. I., Quadir, M. A., Khan, S., Rah-manpoor, A., ... & Das, P. (2024). A comprehensive review on versatile microalga Tetra-selmis: Potentials applications in wastewater remediation and bulk chemical production. Journal of Environmental Management, 365, 121520. https://doi.org/10.1016/j.jenvman.2024.121520
Mendiola, J. A., Sullini, G., Cifuentes, A., & Ibáñez, E. (2014). Optimization of su-percritical fluid extraction processes to obtain bioactives from Isochrysis galbana mi-croalga. http://hdl.handle.net/10261/109509
Miranda, A. M., Ossa, E. A., Vargas, G. J., & Sáez, A. A. (2019). Efecto de las Bajas Concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haema-tococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32. http://dx.doi.org/10.4067/S0718-07642019000100023.
Mitra, M., & Mishra, S. (2019). A biorefinery from Nannochloropsis spp. utilizing wastewater resources. Application of Microalgae in Wastewater Treatment, 2, 123-145. https://doi.org/10.1007/978-3-030-13909-4_6
Mora-Salguero, D. A., Vives Florez, M. J., Husserl Orjuela, J., Fernández-Niño, M., & González Barrios, A. F. (2019). Evaluation of the phenol degradation capacity of microalgae-bacteria consortia from the bay of Cartagena, Colombia. TecnoLógicas, 22(44), 149-158. https://doi.org/10.22430/22565337.1179
Mutanda, T., Naidoo, D., Bwapwa, J. K., & Anandraj, A. (2020). Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal biopro-cessing of products. Frontiers in Energy Research, 8, 598803. https://doi.org/10.3389/fenrg.2020.598803
Navarro-López, E., Ruiz-Nieto, A., Gallardo-Rodríguez, J. J., Cerón-García, M. C., González-López, C. V., & Acién-Fernández, F. G. (2023). Downstream processing of Scenedesmus sp. to obtain biostimulants. Journal of Applied Phycology, 35(5), 2193-2203. https://doi.org/10.1007/s10811-023-03039-3
Niño-Castillo, C. M., Rodríguez-Rivera, F. C., Díaz, L. E., & Lancheros-Díaz, A. G. (2017). Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a partir de la microalga Haematococcus pluvialis. Nova, 15(28), 19-31. https://doi.org/10.22490/24629448.2073
Orozco, M. C. A., Reyes, O. E. S., & Patiño, L. V. (2020). Perspectivas industriales en tecnologías de biofijación de CO2 por microalgas. Documentos De Trabajo ECAPMA, 4(1). https://doi.org/10.22490/ECAPMA.3481
Ortiz-Moreno, M. L., Cortés-Castillo, C. E., Sánchez-Villarraga, J., Padilla, J., & Otero-Paternina, A. M. (2012). Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Orinoquia, 16(1), 11-20. https://doi.org/10.22579/20112629.224
Ortiz-Villota, M. T., Romero-Morales, M. A., & Meza-Rodríguez, L. D. (2018). La biorremediación con microalgas (Spirulina máxima, Spirulina platensis y Chlorella vulga-ris) como alternativa para tratar la eutrofización de la laguna de Ubaque, Colombia. Re-vista de investigación, desarrollo e innovación, 9(1), 163-176. https://doi.org/10.19053/20278306.v9.n1.2018.8153
Ortiz-Moreno, M. L., Sandoval-Parra, K. X., & Solarte-Murillo, L. V. (2019).
Chlorella, ¿Un potencial biofertilizante? Orinoquia, 23(2), 71-78. https://doi.org/10.22579/20112629.582
Ossa, L. D., Andrea, C., Gómez-Vanegas, N. A., & Peñuela-Vásquez, M. (2022). Evaluation of the Carbon to Nitrogen and Carbon to Phosphorus ratios for improving the production of biomass and fatty acids in Chlorella sorokiniana. Hidrobiológica, 32(1), 25-31. https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n1/lugo
Oviedo-Montiel, H. D., Herrera-Cruz, E. E., Hoya-Florez, J. K., Prieto-Guevara, M. J., Estrada-Posada, A. L., & Yepes-Blandón, J. A. (2019). Crecimiento poblacional de Ma-crothrix spinosa alimentada con Chlorella sp. Orinoquia, 23(2), 79-86. ttps://doi.org/10.22579/20112629.571
Özdemir, S., Sukatar, A., & Öztekin, G. B. (2016). Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomato grown in green-house as biofertilizer. Tarim Bilimleri Dergisi, 22(4), 596-605. https://doi.org/10.1501/Tarimbil_0000001418
Pardo-Cárdenas, Y., Herrera-Orozco, I., González-Delgado, Á. D., & Kafarov, V. (2013). Environmental assessment of microalgae biodiesel production in Colombia: comparison of three oil extraction systems. CT&F-Ciencia, Tecnología y Futuro, 5(2), 85-100. https://doi.org/10.29047/01225383.59
Prasad, B., Lein, W., Lindenberger, C. P., Buchholz, R., & Vadakedath, N. (2019). An optimized method and a dominant selectable marker for genetic engineering of an industrially promising microalga—Pavlova lutheri. Journal of Applied Phycology, 31, 1163-1174. https://doi.org/10.1007/s10811-018-1617-9
Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization, 3(4), 89-100. https://doi.org/10.3390/md17060312
Quintero, V., Valderrama, C., Ortiz, D., & Kafarov, V. (2016). Conceptual Frame-work for the Production of Bioethanol and Byproducts from Microalgae Biomass. Chemi-cal Engineering, 49. https://doi.org/10.3303/CET1649066
Rajasekaran, S., Sundaramoorthy, P., & Sankar Ganesh, K. (2015). Effect of FYM, N, P fertilizers and biofertilizers on germination and growth of paddy (Oryza sativa. L). International Letters of Natural Sciences. 8. https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.35.59
Ramírez, M. E., Vélez, Y. H., Rendón, L., & Alzate, E. (2017). Potential of microal-gae in the bioremediation of water with chloride content. Brazilian Journal of Biology, 78(03), 472-476. https://doi.org/10.1590/1519-6984.169372
Rani, K., Sandal, N., & Sahoo, P. K. (2018). A comprehensive review on chlorel-la-its composition, health benefits, market and regulatory scenario. The Pharma Innova-tion Journal, 7(7), 584-589. https://www.thepharmajournal.com/archives/?year=2018&vol=7&issue=7&ArticleId=2319
Rangel-Basto, Y. A., García-Ochoa, I. E., Suarez-Gelvez, J. H., Zuorro, A., Barajas-Solano, A. F., & Urbina-Suarez, N. A. (2018). The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil. Chemical Engineering Transactions, 64, 331-336. https://doi.org/10.3303/CET1864056
Rincón, L. E., Jaramillo, J. J., & Cardona, C. A. (2014). Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renewable Energy, 69, 479-487. https://doi.org/10.1016/j.renene.2014.03.058
Saetang, N., & Tipnee, S. (2021). Towards a sustainable approach for the devel-opment of biodiesel microalgae, Closterium sp. Maejo International Journal of Energy and Environmental Communication, 3(1), 25-29. https://doi.org/10.54279/mijeec.v3i1.245114
Sandoval, J., Malo, B., Cartagena, J., & Fernández, D. (2018). Laboratory evalua-tion of the organic matter removal capacity of Chlorella vulgaris in wastewater from the Salitre WWTP. Revista Mutis, 8(1), 34-42. https://doi.org/10.21789/22561498.1368
Sani, E. R. A., Yong, W. T. L., Chin, G. J. W. L., & Misson, M. (2021). Growth and Lipid Production of Isochrysis galbana in an Upscale Cultivation System. Trans. Sci. Tech-nol, 8, 203-209. http://tost.unise.org/pdfs/vol8/no3-2/ToST-CoFA202...
Santos, J. A. G., & González, L. G. R. (2019). Obtención de biomasa de microalgas en aguas residuales para la producción de biocombustibles. Revista RenovaT, 21. https://revistas.sena.edu.co/index.php/rnt/article/view/3470
Salazar, C. A. G., Cardona, Y. A. P., Osorio, L. A. R., & Porras, L. M. M. (2020). Efecto de un Consorcio de cianobacterias sobre la obtención de biomasa vegetal de la gulupa (Passiflora edulis f. edulis sims) bajo condiciones de campo en el municipio de Marinilla-Antioquia. Hechos Microbiológicos, 11(1 y 2), 12-21. https://doi.org/10.17533/udea.hm.v11n1a02
Sardi-Saavedra, A., Peña-Salamanca, E. J., Madera-Parra, C. A., & Cerón-Hernández, V. A. (2016). Diversity of algal communities associated with a photosynthetic high rate algal system for bioremediation landfill leachate. Latin American Journal of Aquatic Research, 44(1), 113-120. https://doi.org/10.3856/vol44-issue1-fulltext-11
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Micro-algae metabolites: A rich source for food and medicine. Saudi journal of biological sci-ences, 26(4), 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003
Sharma, N., Simon, D. P., Diaz-Garza, A. M., Fantino, E., Messaabi, A., Meddeb-Mouelhi, F., ... & Desgagné-Penix, I. (2021). Diatoms biotechnology: various industrial applications for a greener tomorrow. Frontiers in Marine Science, 8, 636613. https://doi.org/10.3389/fmars.2021.636613
Shao, W., Ebaid, R., El-Sheekh, M., Abomohra, A., & Eladel, H. (2019). Pharma-ceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasas y Aceites, 70(1), e292-e292. https://doi.org/10.3989/gya.0690181
Silva, K. R. P., Bolaños, A. M. V., Rodríguez, L. C. H., Ospina, D. A. P., & Segura, M. Á. B. (2016). Uso de Scenedesmus para la remoción de metales pesados y nutrientes de aguas residuales para la industria textil. Ingeniería solidaria, 12(20), 95-105. https://doi.org/10.16925/in.v19i20.1418
Slocombe, S. P., Zhang, Q., Ross, M., Stanley, M. S., & Day, J. G. (2016). Screen-ing and Improvement of marine microalgae for oil production. Microalgal production for biomass and high-value products, 91-113. https://doi.org/10.1201/b19464
Tejeda-Benítez, L., Henao-Argumedo, D., Alvear-Alayón, M., & Castillo-Saldarriaga, C. R. (2015). Caracterización y perfil lipídico de aceites de microalgas. Revis-ta facultad de ingeniería, 24(39), 43-54. https://doi.org/10.19053/01211129.3550
Urbina-Suarez, N. A., Barajas-Solano, A. F., Garcia-Martínez, J. B., López-Barrera, G. L., & González-Delgado, A. D. (2021a). Prospects for using wastewater from a farm for algae cultivation: The case of Eastern Colombia. Journal of Water and Land Develop-ment, 2022(52), 172-179. https://doi.org/10.24425/jwld.2022.140387
Urbina-Suarez, N. A., García-Martinez, J., López Barrera, G. L., & González-Delgado, A. D. (2021b). Cultivation of Chlorella sp. for biodiesel production using two farming wastewaters in eastern Colombia. Journal of Water and Land Development, 50, 141-149, https://doi.org/10.24425/jwld.2021.138169
Vacca-Jimeno, V. A., Angulo-Mercado, E. R., Puentes-Ballesteros, D. M., Torres-Yépez, J. G., & Plaza-Vega, M. E. (2017). Using the microalgae Chlorella sp. live suspend-ed in decoloration wastewater from a textile factory. Prospectiva, 15(1), 93-99. https://doi.org/10.15665/rp.v15i1.829
Vidal, D. R. A., Benítez, R. E. H., & Vanegas, J. (2018). Efecto de la inoculación de cianobacterias en cultivos de interés comercial en zonas semiáridas de La Guajira-Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31. https://doi.org/10.23850/24220582.889
Ye, Y., Liu, M., Yu, L., Sun, H., & Liu, J. (2024). Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Marine Drugs, 22(2), 54. https://doi.org/10.3390/md22020054
Wilczynski, L., Sarmiento, G., Colorado, M., Quimbaya, F., Téllez, A., & Mendoza, S. (2020, 25 de octubre). How to accelerate the production processes for the survival of human colonies (Conferencia). 18th IAA Symposium on Building Blocks for Future Space Exploration and Development. Dubai, United Arab Emirates. https://iafastro.directory/iac/paper/id/59107/summary/
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Universidad de Bogotá Jorge Tadeo Lozano
- Editorial
- Universidad de Bogotá Jorge Tadeo Lozano