
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
La revisión sistemática analizó la literatura científica publicada entre 2014 y 2024 sobre nanopartículas metálicas sintetizadas por hongos endófitos y su potencial aplicación en el control de microorganismos patógenos. El proceso de búsqueda se desarrolló siguiendo el protocolo prisma 2020 en las bases de datos ScienceDirect, Scopus y Springer Nature Link, además de Google Scholar, aplicando criterios de inclusión y exclusión previamente definidos. Se identificaron 82 estudios relevantes, con India y Egipto como los países con mayor producción investigativa. Las nanopartículas de plata fueron las más reportadas (65 %), predominando las de morfología esférica (83,3 %), las cuales presentaron actividad antimicrobiana destacada frente a Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa y Klebsiella pneumoniae. Entre los hongos empleados para su síntesis sobresalieron Aspergillus terreus y Aspergillus niger. Los hallazgos evidencian la diversidad de hongos utilizados en la obtención de estas nanopartículas y confirman a la plata como el metal de mayor preferencia, así como la morfología esférica como la forma dominante, aspectos relevantes para orientar futuros desarrollos y aplicaciones en el control de patógenos.
Citas
Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc oxide nanoparticles as potential delivery carrier: Green synthesis by Aspergillus niger endophytic fungus, characterization, and in vitro/in vivo antibacterial activity. Pharmaceuticals, 15(9), 1057. https://doi.org/10.3390/ph15091057
Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
Akther, T., Ranjani, S., & Hemalatha, S. (2021). Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli. Environmental Sciences Europe, 33, 83. https://doi.org/10.1186/s12302-021-00524-9
Barbhuiya, R. I., Tinoco-Nevarez, N., Ramalingam, S., Elsayed, A., Subramanian, J., Routray, W., et al. (2022). A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 64(14), 4477–4499. https://doi.org/10.1080/10408398.2022.2142511
Bhattacharjee, S., Debnath, G., Das, A. R., Saha, A. K., & Das, P. (2017). Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045008. https://doi.org/10.1088/2043-6254/aa8ba2
El-Hawary, S. S., Moawad, A. S., Bahr, H. S., Abdelmohsen, U. R., & Mohammed, R. (2020). Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Advances, 10, 22058–22079. https://doi.org/10.1039/D0RA04290K
Fuentes-Canosa, A. (2022). Reseña de sitio web: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Declaración PRISMA 2020. Revista de Estudios e Investigación en Psicología y Educación, 9(2), 323–327. https://doi.org/10.17979/reipe.2022.9.2.9368
Ghasemian, E., Naghoni, A., Tabaraie, B., & Tabaraie, T. (2012). In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. Journal de Mycologie Médicale, 22(4), 322–328. https://doi.org/10.1016/j.mycmed.2012.09.006
Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10, 391. https://doi.org/10.3389/fmicb.2019.00931
Husain, S., Nandi, A., Simnani, F. Z., Saha, U., Ghosh, A., Sinha, A., et al. (2023). Emerging trends in advanced translational applications of silver nanoparticles: A progressing dawn of nanotechnology. Journal of Functional Biomaterials, 14(1), 47. https://doi.org/10.3390/jfb14010047
Kumar, A., Choudhary, A., Kaur, H., Guha, S., Mehta, S., & Husen, A. (2022). Potential applications of engineered nanoparticles in plant disease management: A critical update. Chemosphere, 295, 133798. https://doi.org/10.1016/j.chemosphere.2022.133798
Madhusudhan, L. (2015). Agriculture role on Indian economy. Business and Economics Journal, 6(4),1. https://www.hilarispublisher.com/open-access/agriculture-role-on-indian-economy-2151-6219-1000176.pdf
Mahendra Rai, M., Bonde, S., Golinska, P., Trzcińska-Wencel, J., Gade, A., Abd-Elsalam, K. A., et al. (2021). Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications. Journal of Fungi, 7(2), 139. https://doi.org/10.3390/jof7020139
Murray, C., Shunji-Ikuta, K., Sharara, F., Swetschinski, L., Robles-Aguilar, G., Gray, A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Mwakalesi, J. (2023). Green synthesis of silver nanoparticles using aqueous extract of Vachellia xanthophloea and their potential use for antibacterial and sensing of mercury ions. Plasmonics, 18, 2077–2090. https://doi.org/10.1007/s11468-023-01909-7
Nassar, A. R., Eid, A. M., Atta, H. M., et al. (2023). Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Scientific Reports. https://doi.org/10.1038/s41598-023-35360-9
O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The Review on Antimicrobial Resistance. https://www.cabidigitallibrary.org/doi/full/10.5555/20173071720
Okeke, E. S., Nweze, E. J., Anaduaka, E. G., Okoye, C. O., Anosike, C. A., Joshua, P. E., Ezeorba, T. C., et al. (2023). Plant-derived nanomaterials (PDNM): A review on pharmacological potentials against pathogenic microbes, antimicrobial resistance (AMR), and some metabolic diseases. 3 Biotech, 13, 291. https://doi.org/10.1007/s13205-023-03713-w
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2023). World cereal production. https://www.fao.org/faostat/en/#data/QCL
Organización Mundial de la Salud. (2024, 28 de mayo). 77.ª Asamblea Mundial de la Salud A77/A/CONF./1: Punto 11.8 del orden del día. Resistencia a los antimicrobianos: Acelerar las respuestas nacionales y mundiales. https://www.paho.org/es/documentos/eb154conf7-resistencia-antimicrobianos-acelerar-respuestas-nacionales-mundiales
Pandey, A. K., Samota, M. K., Kumar, A., Silva, A. S., & Dubey, N. K. (2023). Fungal mycotoxins in food commodities: Present status and future concerns. Frontiers in Sustainable Food Systems, 7, 1162595. https://doi.org/10.3389/fsufs.2023.1162595
Pansambal, S., Oza, R., Borgave, S., Chauhan, A., Bardapurkar, P., Vyas, S., et al. (2023). Bioengineered cerium oxide (CeO₂) nanoparticles and their diverse applications: A review. Applied Nanoscience, 13, 6067–6092. https://doi.org/10.1007/s13204-022-02574-8
Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127. https://doi.org/10.1016/j.nantod.2014.09.009
Ray, M. K., Mishra, A. K., Mohanta, Y. K., Mahanta, S., Chakrabartty, I., Kungwani, N. A., et al. (2023). Nanotechnology as a promising tool against phytopathogens: A futuristic approach to agriculture. Agriculture, 13(9), 1856. https://doi.org/10.3390/agriculture13091856
Rehman, A. U., Tabassum, A., Aftab, A., Zahid, N., Jamal, A., Sajini, A. A., et al. (2023). Artemisia vulgaris reduced and stabilized titanium oxide nanoparticles for anti-microbial, anti-fungal and anti-cancer activity. Applied Nanoscience, 13, 6165–6175. https://doi.org/10.1007/s13204-023-02859-6
Rico, C. M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Chemistry and biochemistry of nanoparticles, and their role in the antioxidant defense system in plants. En M. H. Siddiqui, M. H. Al-Whaibi, & F. Mohammad (Eds.), Nanotechnology and plant sciences: Nanoparticles and their impact on plants (pp. 1–17). Springer. https://doi.org/10.1007/978-3-319-14502-0_1
Ruffo-Roberto, S., Youssef, K., Farghily-Hashim, A., & Ippolito, A. (2019). Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials, 9(12), 1752. https://doi.org/10.3390/nano9121752
Saanu, B., Mary, O., Stell, M., Adeyinka, O., Pelumi, O., Emmanuel, A., et al. (2024). Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon, 10(21), e39636. https://doi.org/10.1016/j.heliyon.2024.e39636
Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., Sandoval-Espinosa, Y. K. M. S., Ulloa-Benítez, Á., Armendáriz-Guillén, B., & García-Méndez, M. C., et al. (2013). Hongos endófitos: Fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP. Revista Especializada en Ciencias Químico-Biológicas, 16(2), 132–146. https://doi.org/10.1016/S1405-888X(13)72084-9
Sangeetha, J., Mundaragi, A., Thangadurai, D., Maxim, S. S., Pandhari, R. M., & Alabhai, J. M. (2019). Nanobiotechnology for agricultural productivity, food security, and environmental sustainability. En D. Panpatte & Y. Jhala (Eds.), Nanotechnology for agriculture: Crop production & protection. Springer. https://doi.org/10.1007/978-981-32-9374-8_1
Sumanth, B., Lakshmeesha, T. R., Ansari, M. A., Alzohairy, M. A., Udayashankar, A. C., Shobha, B., et al. (2020). Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. International Journal of Nanomedicine, 15, 8519–8536. https://doi.org/10.2147/IJN.S271743
Yu, H., Han, X., & Quiñones Pérez, D. (2021). La humanidad enfrenta un desastre: la resistencia antimicrobiana. Revista Habanera de Ciencias Médicas, 20(3). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2021000300020&lng=es&tlng=es
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Universidad de Bogotá Jorge Tadeo Lozano
- Editorial
- Universidad de Bogotá Jorge Tadeo Lozano
PDF
FLIP
HTML




