Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
La astaxantina es un pigmento carotenoide ampliamente reconocido por sus propiedades antioxidantes y por sus grandes beneficios sobre la salud. Aunque existen varios microorganismos que tienen la capacidad de sintetizar este carotenoide, la microalga Haematococcus pluvialis ha demostrado ser la fuente más promisoria al realizarlo bajo condiciones de estrés por deficiencia de nutrientes, diferentes intensidades de luz, entre otros. Dado que la astaxantina es una molécula con gran inestabilidad química, baja biodisponibilidad e hidrofobicidad, existen diferentes métodos de formulación, que mejoran su estabilidad y por ende su uso como colorante y compuesto bioactivo en productos alimenticios, nutracéuticos, cosméticos, acuícolas o farmacéuticos. Debido a las diferentes aplicaciones y utilidades del carotenoide, se propone como objetivo conocer las aplicaciones y formulaciones existentes de astaxantina como métodos para mejorar su estabilidad, biodisponibilidad y aplicación, e identificar los materiales utilizados y las tecnologías aplicadas en los procesos de formulación. Las emulsiones, liposomas, encapsulados y microencapsulados, representan las formulaciones actuales, las cuales utilizan como diferentes materiales para proteger la pared, y evitar la oxidación del carotenoide, alginato de calcio, aceite de girasol, aceite de soja, maltodextrina y goma arábiga, estos presentan diferentes porcentajes de eficiencia de encapsulación entre 40-98.8% (Burgos-Díaz et al., 2020, Oh et al., 2020), y se emplean tecnologías como emulsificación, liofilización, nanoliposomas, spray drying, entre otras.
Palabras clave:
Citas
Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1280–1306. https://doi.org/10.1111/1541-4337.12725
Ambati, R. R., Phang, S.-M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Marine Drugs, 12(1), 128–152. https://doi.org/10.3390/MD12010128
Bassijeh, A., Ansari, S., & Hosseini, S. M. H. (2020). Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and Persian gum and its use as a natural colorant in a model beverage. Food Research International, 137, 109689. https://doi.org/10.1016/J.FOODRES.2020.109689
Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77–83. https://doi.org/10.1016/J.FOODCHEM.2016.02.104
Braeuer, A. (2015). High Pressure: Fellow and Opponent of Spectroscopic Techniques. Supercritical Fluid Science and Technology, 7, 1–40. https://doi.org/10.1016/B978-0-444-63422-1.00001-8
Burgos-Díaz, C., Opazo-Navarrete, M., Soto-Añual, M., Leal-Calderón, F., & Bustamante, M. (2020). Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Research International, 134, 109244. https://doi.org/10.1016/J.FOODRES.2020.109244
Calvo, N. S., Reynoso, C. M., Resnik, S., Cortés-Jacinto, E., & Collins, P. (2020). Thermal stability of astaxanthin in oils for its use in fish food technology. Animal Feed Science and Technology, 270, 114668. https://doi.org/10.1016/J.ANIFEEDSCI.2020.114668
Castillo, N. C. M., Rivera, R. C., Díaz, L. E., & Díaz, L. A. G. (2017). Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a partir de la microalga Haematococcus pluvialis. Nova, 15(28), 19-31. https://doi.org/10.22490/24629448.2073
Chandra Roy, V., Ho, T. C., Lee, H. J., Park, J. S., Nam, S. Y., Lee, H., Getachew, A. T., & Chun, B. S. (2021). Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. Journal of Cleaner Production, 284, 125417. https://doi.org/10.1016/J.JCLEPRO.2020.125417
Cong, X., Zang, X., Dong, M., Wang, Z., He, B., Hou, L., Wei, X., Zhang, F., Shang, M., Yangzong, Z., Li, R., & Zhang, X. (2020). Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress. Aquatic Biology, 29, 155–164. https://doi.org/10.3354/ab00733
Davinelli, S., Nielsen, M. E., & Scapagnini, G. (2018). Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients, 10(4), 522. https://doi.org/10.3390/NU10040522
Degobert, G., & Aydin, D. (2021). Lyophilization of Nanocapsules: Instability Sources, Formulation and Process Parameters. Pharmaceutics, 13(8), 1112. https://doi.org/10.3390/PHARMACEUTICS13081112
Eghbal, N., & Choudhary, R. (2018). Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT, 90, 254–264. https://doi.org/10.1016/J.LWT.2017.12.036
Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science & Technology, 31(2), 138–155. https://doi.org/10.1016/J.TIFS.2013.04.001
Fonte, P., Reis, S., & Sarmento, B. (2016). Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. Journal of Controlled Release, 225, 75–86. https://doi.org/10.1016/J.JCONREL.2016.01.034
Gecim, G., Aydin, G., Tavsanoglu, T., Erkoc, E., & Kalemtas, A. (2021). Review on extraction of polyhydroxyalkanoates and astaxanthin from food and beverage processing wastewater. Journal Of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101775
Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in Pharmaceutical Sciences, 13(4), 288. https://doi.org/10.4103/1735-5362.235156
Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152. https://doi.org/10.1016/J.FOODCHEM.2016.08.022
Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E. & Camacho, J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532
Hadian, M., Hosseini, S. M. H., Farahnaky, A., Mesbahi, G. R., Yousefi, G. H., & Saboury, A. A. (2016). Isothermal titration calorimetric and spectroscopic studies of β-lactoglobulin-water-soluble fraction of Persian gum interaction in aqueous solution. Food Hydrocolloids, 55, 108–118. https://doi.org/10.1016/J.FOODHYD.2015.11.006
Han, D., Li Y., & Hu Q. (2013). Astaxanthin in microalgae: pathways, functions and biotechnological implications. ALGAE, 28(2), 131–147. https://doi.org/10.4490/ALGAE.2013.28.2.131
Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research, 46, 101768. https://doi.org/10.1016/J.ALGAL.2019.101768
Ito, N., Saito, H., Seki, S., Ueda, F., & Asada, T. (2018). Effects of Composite Supplement Containing Astaxanthin and Sesamin on Cognitive Functions in People with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Alzheimer’s Disease, 62, 1767–1775. https://doi.org/10.3233/JAD-170969
Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering 2020, 8(10), 789. https://doi.org/10.3390/JMSE8100789
Jiang, G. L., & Zhu, M. J. (2019). Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing. LWT, 106, 179–185. https://doi.org/10.1016/J.LWT.2019.02.055
Joshi, D., & Adhikari, N. (2019). An Overview on Common Organic Solvents and Their Toxicity. Journal Of Pharmaceutical Research International, 28(3), 10. https://doi.org/10.9734/jpri/2019/v28i330203
Keshani, S., Daud, W. R. W., Nourouzi, M. M., Namvar, F., & Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152–162. https://doi.org/10.1016/J.JFOODENG.2014.09.004
Khalid, N., Shu, G., Holland, B. J., Kobayashi, I., Nakajima, M., & Barrow, C. J. (2017). Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Food Research International, 102, 364–371. https://doi.org/10.1016/J.FOODRES.2017.06.019
Khoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., & Show, P. L. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606. https://doi.org/10.1016/J.BIORTECH.2019.121606
Kumar Saha, S., Mchugh, E., Hayes, J., Moane, S., Walsh, D., & Murray, P. (2012). Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresource Technology, 128, 118-124. https://doi.org/10.1016/j.biortech.2012.10.049
Lafarga, T., Sánchez-Zurano, A., Morillas-España, A., & Acién-Fernández, F. G. (2021). Extremophile microalgae as feedstock for high-value carotenoids: A review. International Journal of Food Science and Technology. https://doi.org/10.1111/IJFS.15069
Le, N. T. T., Cao, V. Du, Nguyen, T. N. Q., Le, T. T. H., Tran, T. T., & Thi, T. T. H. (2019). Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. International Journal of Molecular Sciences, 20(19), 4706. https://doi.org/10.3390/IJMS20194706
Leu, S., & Boussiba, S. (2014). Advances in the Production of High-Value Products by Microalgae. Industrial Biotechnology, 10(3), 169–183. https://doi.org/10.1089/IND.2013.0039
Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BioMed Research International. https://doi.org/10.1155/2019/8101762
Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., & Xiao, C. et al. (2020). Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 43. https://doi.org/10.1016/j.biotechadv.2020.107602
Liu, X., McClements, D. J., Cao, Y., & Xiao, H. (2016). Chemical and Physical Stability of Astaxanthin-Enriched Emulsion-Based Delivery Systems. Food Biophysics, 11(3), 302–310. https://doi.org/10.1007/S11483-016-9443-6
Łupina, K., Kowalczyk, D., Lis, M., Raszkowska-Kaczor, A., & Drozłowska, E. (2021). Controlled release of water-soluble astaxanthin from carboxymethyl cellulose/gelatin and octenyl succinic anhydride starch/gelatin blend films. Food Hydrocolloids, 123, 107179. https://doi.org/10.1016/J.FOODHYD.2021.107179
Machado, F. R. S., Reis, D. F., Boschetto, D. L., Burkert, J. F. M., Ferreira, S. R. S., Oliveira, J. V., & Burkert, C. A. V. (2014). Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Industrial Crops and Products, 54, 17–21. https://doi.org/10.1016/J.INDCROP.2014.01.007
Machado, F. R. S., Trevisol, T. C., Boschetto, D. L., Burkert, J. F. M., Ferreira, S. R. S., Oliveira, J. V., & Burkert, C. A. V. (2016). Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 218, 108–114. https://doi.org/10.1016/J.JBIOTEC.2015.12.004
Mota, G. C. P., Moraes, L. B. S. de, Oliveira, C. Y. B., Oliveira, D. W. S., Abreu, J. L. de, Dantas, D. M. M., & Gálvez, A. O. (2021). Astaxanthin from Haematococcus pluvialis: processes, applications, and market. Preparative Biochemistry and Biotechnology, 9(1). https://doi.org/10.1080/10826068.2021.1966802
Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Marine Drugs, 18(9). https://doi.org/10.3390/MD18090459
Najafi, D., Taheri, R. A., Najafi, A., Shamsollahi, M., & Alvarez-Rodriguez, M. (2020). Effect of astaxanthin nanoparticles in protecting the post-thawing quality of rooster sperm challenged by cadmium administration. Poultry Science, 99(3). https://doi.org/10.1016/j.psj.2019.12.006
Nasab, M. E., Takzaree, N., Saffaria, P. M., & Partoazar, A. (2019). In vitro antioxidant activity and in vivo wound-healing effect of lecithin liposomes: a comparative study. Journal of Comparative Effectiveness Research, 8(8), 633–643. https://doi.org/10.2217/CER-2018-0128
Niizawa, I., Espinaco, B. Y., Zorrilla, S. E., & Sihufe, G. A. (2019). Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads. International Journal of Biological Macromolecules, 121, 601–608. https://doi.org/10.1016/J.IJBIOMAC.2018.10.044
Nireesha, G., Divya, L., Sowmya, C., Venkateshan, N., Niranjan Babu, M., & Lavakumar, V. (2013). Lyophilization/Freeze Drying - An Review. International Journal of Novel Trends in Pharmaceutical Sciences, 3(4), 87-98. https://scienztech.org/index.php/ijntps/article/view/96
Oh, H., Lee, J. S., Sung, D., Lim, J.-M., & Choi, W. Il. (2020). Potential Antioxidant and Wound Healing Effect of Nano-Liposol with High Loading Amount of Astaxanthin. International Journal of Nanomedicine, 15, 9231. https://doi.org/10.2147/IJN.S272650
Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. Bin, Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 11(2), 256. https://doi.org/10.3390/BIOM11020256
Oslan, S., Tan, J. S., Oslan, S. N., Matanjun, P., Mokhtar, R., Shapawi, R., & Huda, N. (2021). Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules (Basel, Switzerland), 26(21), 6470. https://doi.org/10.3390/molecules26216470
Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494–506. https://doi.org/10.1016/J.FOODCHEM.2018.07.205
Pan-utai, W., Boonpok, S., & Pornpukdeewattana, S. (2021). Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 33, 101979. https://doi.org/10.1016/J.BCAB.2021.101979
Pan, L., Wang, H., & Gu, K. (2018). Nanoliposomes as Vehicles for Astaxanthin: Characterization, In Vitro Release Evaluation and Structure. Molecules, 23(11). https://doi.org/10.3390/MOLECULES23112822
Parra-Huertas, R.A. (2010). Revisión: microencapsulación de alimentos. Revista Facultad Nacional de Agronomía Medellín, 63(2), 5669-5684. ISSN 0304-2847.
Patel, S. M., & Pikal, M. J. (2013). Lyophilization Process Design Space. Journal of Pharmaceutical Sciences, 102(11), 3883–3887. https://doi.org/10.1002/JPS.23703
Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77, 1327–1340. https://doi.org/10.1016/J.MSEC.2017.03.219
Pena Pereira, F. y Tobiszewski, M. (2017). The Application of Green Solvents in Separation Processes. https://www.elsevier.com/books/the-application-of-green-solvents-in-separation-processes/pena-pereira/978-0-12-805297-6
Peng, S., Zou, L., Zhou, W., Liu, W., Liu, C., & McClements, D. J. (2019). Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Journal of Agricultural and Food Chemistry, 67(26), 7506–7511. https://doi.org/10.1021/ACS.JAFC.9B01602
Pereira, C. P. M., Souza, A. C. R., Vasconcelos, A. R., Prado, P. S., & Name, J. J. (2021). Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). International Journal of Molecular Medicine, 47(1), 37–48. https://doi.org/10.3892/IJMM.2020.4783
Raaijmakers, M. J. T., & Benes, N. E. (2016). Current trends in interfacial polymerization chemistry. Progress in Polymer Science, 63, 86–142. https://doi.org/10.1016/J.PROGPOLYMSCI.2016.06.004
Satoh, T. (2016). Astaxanthin: Health Benefits and Toxicity. Nutraceuticals: Efficacy, Safety and Toxicity, 531–539. https://doi.org/10.1016/B978-0-12-802147-7.00038-3
Serna-Cock, L., & Vallejo-Castillo, V. (2013). Probiotic encapsulation. African Journal of Microbiology Research, 7(40), 4743–4753. https://doi.org/10.5897/AJMR2013.5718
Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 0(APR2016), 531. https://doi.org/10.3389/FPLS.2016.00531
Shen, X., Fang, T., Zheng, J., & Guo, M. (2019). Physicochemical Properties and Cellular Uptake of Astaxanthin-Loaded Emulsions. Molecules, 24(4). https://doi.org/10.3390/MOLECULES24040727
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49-67. https://doi.org/10.1016/J.TIFS.2017.05.006
Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J., & Nakajima, M. (2018). Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chemistry, 255, 67–74. https://doi.org/10.1016/J.FOODCHEM.2018.02.062
Singh, A., & Van den Mooter, G. (2016). Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews, 100, 27–50. https://doi.org/10.1016/J.ADDR.2015.12.010
Sun, Z., Deng, Y., & Zhao, Y. (2019). Preparation, Optimization, and Characterization of Natural Apple Essence-Loaded Liposomes. Journal of Food Science, 84(3), 540–547. https://doi.org/10.1111/1750-3841.14452
Taksima, T., Limpawattana, M., & Klaypradit, W. (2015). Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT - Food Science and Technology, 62(1), 431–437. https://doi.org/10.1016/J.LWT.2015.01.011
Telli, M., & Şahin, G. (2020). Effects of gradual and sudden changes of salinity and light supply for astaxanthin production in haematococcus pluvialis (Chlorophyceae). Fundamental and Applied Limnology, 194(1), 11–17. https://doi.org/10.1127/FAL/2020/1300
Varona, S., Rodríguez Rojo, S., Martín, Á., Cocero, M. J., Serra, A. T., Crespo, T., & Duarte, C. M. M. (2013). Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Industrial Crops and Products, 42(1), 243–250. https://doi.org/10.1016/J.INDCROP.2012.05.020
Vinothini, K., & Rajan, M. (2019). Mechanism for the Nano-Based Drug Delivery System. Characterization and Biology of Nanomaterials for Drug Delivery. Nanoscience and Nanotechnology in Drug Delivery, 219–263. https://doi.org/10.1016/B978-0-12-814031-4.00009-X
Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J., & Li, S. (2014). The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresource Technology,163, 26-32. https://doi.org/10.1016/j.biortech.2014.04.017
Wu, Y. C., Huang, H. H., Wu, Y. J., Manousakas, I., Yang, C. C., & Kuo, S. M. (2019). Therapeutic and Protective Effects of Liposomal Encapsulation of Astaxanthin in Mice with Alcoholic Liver Fibrosis. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/IJMS20164057
Yamashita, E. (2015). Let astaxanthin be thy medicine. PharmaNutrition, 3(4), 115–122. https://doi.org/10.1016/J.PHANU.2015.09.001
Yang, J., Hua, S., Huang, Z., Gu, Z., Cheng, L., & Hong, Y. (2021). Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures. Carbohydrate Polymers, 272, 118475. https://doi.org/10.1016/J.CARBPOL.2021.118475
Zanoni, F., Vakarelova, M., & Zoccatelli, G. (2019). Development and Characterization of Astaxanthin-Containing Whey Protein-Based Nanoparticles. Marine Drugs 17(11), 627. https://doi.org/10.3390/MD17110627
Zhang, C., Liu, J., & Zhang, L. (2016). Cell cycles and proliferation patterns in Haematococcus pluvialis. Chinese Journal of Oceanology and Limnology 35(5), 1205–1211. https://doi.org/10.1007/S00343-017-6103-8
Zhang, W.-W., Zhou, X.-F., Zhang, Y.-L., Cheng, P.-F., Ma, R., Cheng, W.-L., & Chu, H.-Q. (2018). Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors. J. Microbiol. Biotechnol, 28(12), 2019–2028. https://doi.org/10.4014/jmb.1807.07008
Zhang, X., Li, W., Dou, X., Nan, D., & He, G. (2020). Astaxanthin Encapsulated in Biodegradable Calcium Alginate Microspheres for the Treatment of Hepatocellular Carcinoma In Vitro. Applied Biochemistry and Biotechnology 191(2), 511–527. https://doi.org/10.1007/S12010-019-03174-Z
Zhao, X., Liu, H., Zhang, X., Zhang, G., & Zhu, H. (2019). Astaxanthin from Haematococcus pluvialis Microencapsulated by Spray Drying: Characterization and Antioxidant Activity. Journal of the American Oil Chemists’ Society, 96(1), 93–102. https://doi.org/10.1002/AOCS.12170
Zhao, Y., Yue, C., Geng, S., Ning, D., Ma, T., & Yu, X. (2019). Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess and Biosystems Engineering 42(4), 593–602. https://doi.org/10.1007/S00449-018-02064-8
Zhou, T., Wang, X., Ju, Y., Shi, C., & Kan, G. (2018). Stability application and research of astaxanthin integrated into food. IOP Conf. Ser. 394(2) https://doi.org/10.1088/1757-899X/394/2/022007
Ziyatdinova, G. K., & Budnikov, H. C. (2018). Spice Antioxidants as Objects of Analytical Chemistry. Journal of Analytical Chemistry 73(10), 946–965. https://doi.org/10.1134/S106193481810012X