Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
En este artículo de revisión se presentan las diferentes formas de fabricación de nanofibras de polímeros haciendo énfasis tanto en la técnica de electrospinning, la cual es un proceso sencillo, versátil y adecuado para la fabricación de materiales unidimensionales (1D), como en los parámetros que se deben considerar al utilizar este método; además, se señala la importancia de los parámetros de procesamiento (voltaje, distancia y flujo), de solución (concentración, viscosidad y tensión superficial) y ambientales (temperatura y humedad). Finalmente, se mencionan las distintas aplicaciones que involucran nanofibras en campos de acción como energía, ingeniería de tejidos, medio ambiente y alimentos.
Palabras clave:
Citas
Al-Kaysi, R. O., Ghaddar, T. H. y Guirado, G. (2009). Fabrication of One-Dimensional Organic Nanostructures Using Anodic Aluminum Oxide Templates. Journal of Nanomaterials, 2009, 1-14. doi: 10.1155/2009/436375
Alivisatos, P., Barbara, P. F., Castleman, A. W., Chang, J., Dixon, D. A., Klein, M. L., … Thompson, M. E. (1998). From Molecules to Materials: Current Trends and Future Directions. Advanced Materials, 10(16), 1297-1336. doi: 10.1002/(SICI)1521-4095(199811)10:16<1297::AID-ADMA1297>3.0.CO;2-7
Aruna, S. T., Balaji, L. S., Kumar, S. S. y Prakash, B. S. (2017). Electrospinning in solid oxide fuel cells – A review. Renewable and Sustainable Energy Reviews, 67, 673-682. doi: 10.1016/j.rser.2016.09.003
Barhate, R. S. y Ramakrishna, S. (2007). Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science, 296(1), 1-8.
doi: 10.1016/j.memsci.2007.03.038
Benavides, R. E., Jana, S. C. y Reneker, D. H. (2012). Nanofibers from Scalable Gas Jet Process. ACS Macro Letters, 1(8), 1032-1036. doi: 10.1021/mz300297g
Benavides, R. E., Jana, S. C. y Reneker, D. H. (2013). Role of Liquid Jet Stretching and Bending Instability in Nanofiber Formation by Gas Jet Method. Macromolecules, 46(15), 6081-6090. doi: 10.1021/ma400900s
Bhat, G. S. y Malkan, S. R. (2002). Extruded continuous filament nonwovens: Advances in scientific aspects. Journal of Applied Polymer Science, 83(3), 572-585.
doi: 10.1002/app.2259
Braghirolli, D. I., Steffens, D. y Pranke, P. (2014). Electrospinning for regenerative medicine: a review of the main topics. Drug Discovery Today, 19(6), 743-753.
doi: 10.1016/j.drudis.2014.03.024
Buchko, C. J., Chen, L. C., Shen, Y. y Martin, D. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40(26), 7397-7407. doi: 10.1016/S0032-3861(98)00866-0
Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B. y Rabolt. J. F. (2003). Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 37(2), 573-578. doi: 10.1021/MA0351975
Celebioglu, A., Yildiz, Z. I. y Uyar, T. (2017). Electrospun crosslinked poly-cyclodextrin nanofibers: Highly efficient molecular filtration thru host-guest inclusion complexation. Scientific Reports, 7. doi: 10.1038/s41598-017-07547-4
Da Silva Vaz, B., Vieira Costa, J. A. y De Morais, M. G. (2017). Production of polymeric nanofibers with different conditions of the electrospinning process. Matéria (Rio de Janeiro), 22(2). doi: 10.1590/s1517-707620170002.0180
Damodar, R. A., You, S.-J. y Chou, H.-H. (2009). Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172(2-3), 1321-1328. doi: 10.1016/j.jhazmat.2009.07.139
Deitzel, J. (2002). Electrospinning of polymer nanofibers with specific surface chemistry. Polymer, 43(3), 1025-1029. doi: 10.1016/S0032-3861(01)00594-8
Doshi, J. y Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi: 10.1016/0304-3886(95)00041-8
Du, B., Zeng, C., Zhang, W., Quan, D., Ling, E. y Zeng, Y. (2014). A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat. Journal of Biomedical Materials Research Part A, 102(6), 1715-1725. doi: 10.1002/jbm.a.34835
Dumitriu, R. P., Mitchell, G. R., Davis, F. J. y Vasile, C. (2017). Functionalized Coatings by Electrospinning for Anti-oxidant Food Packaging. Procedia Manufacturing, 12, 59-65. doi: 10.1016/j.promfg.2017.08.008
El-Newehy, M. H., Al-Deyab, S. S., Kenawy, E.-R. y Abdel-Megeed, A. (2011). Nanospider Technology for the Production of Nylon-6 Nanofibers for Biomedical Applications. Journal of Nanomaterials, 2011, 1-8. doi: 10.1155/2011/626589
Ellison, C. J., Phatak, A., Giles, D. W., Macosko, C. W. y Bates, F. S. (2007). Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306-3316. doi: 10.1016/j.polymer.2007.04.005
Emre Kiyak, Y. y Cakmak, E. (2014). Nanofiber Production Methods. Electronic Journal of Textile Technologies / Tekstil Teknolojileri Elektronik Dergisi, 8(3), 49-60. Recuperado de http://teknolojikarastirmalar.com/pdf/tr/04_2014_8_3_1169_1945.pdf
Fabra, M. J., López-Rubio, A. y Lagaron, J. M. (2016). Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocolloids, 55, 11-18. doi: 10.1016/j.foodhyd.2015.10.026
Faccini, M., Borja, G., Boerrigter, M., Morillo Martín, D., Martínez Crespiera, S., Vázquez-Campos, S., … Amantia, D. (2015). Electrospun Carbon Nanofiber Membranes for Filtration of Nanoparticles from Water. Journal of Nanomaterials, 2015, 1-9. doi: 10.1155/2015/247471
Ganesh, V. A., Nair, A. S., Raut, H. K., Walsh, T. M. y Ramakrishna, S. (2012). Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2(5), 2067-2072. doi: 10.1039/c2ra00921h
Ghosh, M. y Jana, S. C. (2015). Bi-component inorganic oxide nanofibers from gas jet fiber spinning process. RSC Advances, 5(127), 105313-105318. doi: 10.1039/C5RA20963C
Haider, A., Haider, S. y Kang, I.-K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2015.11.015
He, C., Nie, W. y Feng, W. (2014). Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. Journal of Materials Chemistry B, 2(45), 7828-7848. doi: 10.1039/C4TB01464B
Jiao, S., Xu, L., Jiang, K. y Xu, D. (2006). Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating. Advanced Materials, 18(9), 1174-1177. doi: 10.1002/adma.200502386
Jose, M. V., Thomas, V., Xu, Y., Bellis, S., Nyairo, E. y Dean, D. (2010). Aligned Bioactive Multi-Component Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering. Macromolecular Bioscience, 10(4), 433-444. doi: 10.1002/mabi.200900287
Kamiyama, M., Soeda, T., Nagajima, S. y Tanaka, K. (2012). Development and application of high-strength polyester nanofibers. Polymer Journal, 44(10), 987-994. doi: 10.1038/pj.2012.63
Khalf, A. y Madihally, S. V. (2017). Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 112, 1-17. doi: 10.1016/j.ejpb.2016.11.010
Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C. y Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 46(14), 5094-5102. doi: 10.1016/j.polymer.2005.04.040
Ki, C. S., Kim, J. W., Hyun, J. H., Lee, K. H., Hattori, M., Rah, D. K. y Park, Y. H. (2007). Electrospun three-dimensional silk fibroin nanofibrous scaffold. Journal of Applied Polymer Science, 106(6), 3922-3928. doi: 10.1002/app.26914
Kruger, B., Benck, U., Singer, T. y Kramer, B. K. (2012). Drug-induced impairment of renal function. Deutsche Medizinische Wochenschrift, 137(38), 1873-1877.
doi: 10.1055/s-0032-1305312
Kumar, R., Al-Dossary, O., Kumar, G. y Umar, A. (2015). Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Letters, 7(2), 97-120.
doi: 10.1007/s40820-014-0023-3
Lai, C., Wang, X., Zhao, Y., Fong, H. y Zhu, Z. (2013). Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Advances, 3(18), 6640-6645. doi: 10.1039/c3ra23420g
Lang, L., Wu, D. y Xu, Z. (2012). Controllable Fabrication of TiO2 1D-Nano/Micro Structures: Solid, Hollow, and Tube-in-Tube Fibers by Electrospinning and the Photocatalytic Performance. Chemistry - A European Journal, 18(34), 10661-10668. doi: 10.1002/chem.201200378
Lee, J. H., Rim, N. G., Jung, H. S. y Shin, H. (2010). Control of Osteogenic Differentiation and Mineralization of Human Mesenchymal Stem Cells on Composite Nanofibers Containing Poly[lactic- co -(glycolic acid)] and Hydroxyapatite. Macromolecular Bioscience, 10(2), 173-182. doi: 10.1002/mabi.200900169
Lev, J., Holba, M., Kalhotka, L., Mikula, P. y Kimmer, D. (2012). Improvements in the Structure of Electrospun Polyurethane Nanofibrous Materials Used for Bacterial Removal from Wastewater. International Journal of Theoretical and Applied Nanotechnology, 1(1), 16-20. doi: 10.11159/ijtan.2012.003
Li, Z. y Wang, C. (2013a). Effects of Working Parameters on Electrospinning. En One-Dimensional nanostructures (pp. 15-28). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-36427-3_2
Li, Z. y Wang, C. (2013b). Introduction of Electrospinning. En One-Dimensional nanostructures (pp. 1-13). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-36427-3_1
Liang, D., Hsiao, B. S. y Chu, B. (2007). Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews, 59(14), 1392-1412.
doi: 10.1016/j.addr.2007.04.021
Liang, L., Kang, X., Sang, Y. y Liu, H. (2016). One-Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications. Advanced Science, 3(7). doi: 10.1002/advs.201500358
Liu, J., Chen, Q., Zhang, Z., Zheng, Y., Sun, X., Cao, X., … Jiang, P. (2013). Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Cells Tissues Organs, 198(1), 35-46. doi: 10.1159/000351665
Ma, P. X. y Zhang, R. (1999). Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 46(1), 60-72. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/10357136
Masaeli, E., Morshed, M., Nasr-Esfahani, M. H., Sadri, S., Hilderink, J., Van Apeldoorn, A., … Moroni, L. (2013). Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLOS ONE, 8(2). doi: 10.1371/journal.pone.0057157
Meng, X., Shin, D.-W., Yu, S. M., Jung, J. H., Kim, H. I., Lee, H. M., … Yoo, J.-B. (2011). Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. CrystEngComm, 13(8), 3021-3029. doi: 10.1039/c0ce00765j
Mit-uppatham, C., Nithitanakul, M. y Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327-2338. doi: 10.1002/macp.200400225
Mrówczyński, W., Mugnai, D., De Valence, S., Tille, J. C., Khabiri, E., Cikirikcioglu, M., … Walpoth, B. H. (2014). Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. Journal of Vascular Surgery, 59(1), 210-219. doi: 10.1016/J.JVS.2013.03.004
Naik, N., Caves, J., Kumar, V., Chaikof, E. y Allen, M. G. (2009). A template-based fabrication technique for spatially-designed polymer micro/nanofiber composites. Digest of Technical Papers. International Conference on Solid-State Sensors, Actuators, and Microsystems, 2009, 1869-1872. doi: 10.1109/SENSOR.2009.5285711
Nayak, R. (2017). Polypropylene nanofibers. Melt electrospinning versus meltblowing. Springer International Publishing. doi: 10.1007/978-3-319-61458-8
Nirmala, R., Navamathavan, R., El-Newehy, M. H. y Kim, H. Y. (2011). Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Materials Letters, 65(3), 493-496. doi: 10.1016/j.matlet.2010.10.066
Orera, V. M., Laguna-Bercero, M. A. y Larrea, A. (2014). Fabrication Methods and Performance in Fuel Cell and Steam Electrolysis Operation Modes of Small Tubular Solid Oxide Fuel Cells: A Review. Frontiers in Energy Research, 2(22). doi: 10.3389/fenrg.2014.00022
Ozin, G. A. (1992). Nanochemistry: Synthesis in diminishing dimensions. Advanced Materials, 4(10), 612-649. doi: 10.1002/adma.19920041003
Pant, H. R., Bajgai, M. P., Yi, C., Nirmala, R., Nam, K. T., Baek, W. y Kim, H. Y. (2010). Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370(1-3), 87-94. doi: 10.1016/j.colsurfa.2010.08.051
Pant, H. R., Park, C. H., Tijing, L. D., Amarjargal, A., Lee, D.-H. y Kim, C. S. (2012). Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 407, 121-125. doi: 10.1016/j.colsurfa.2012.05.018
Patil, J. V, Mali, S. S., Kamble, A. S., Hong, C. K., Kim, J. H. y Patil, P. S. (2017). Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 423, 641-674. doi: 10.1016/j.apsusc.2017.06.116
Pedicini, A. y Farris, R. J. (2004). Thermally induced color change in electrospun fiber mats. Journal of Polymer Science Part B: Polymer Physics, 42(5), 752-757.
doi: 10.1002/polb.10711
Pérez-Masiá, R., López-Rubio, A., Fabra, M. J. y Lagaron, J. M. (2014). Use of electrohydrodynamic processing to develop nanostructured materials for the preservation of the cold chain. Innovative Food Science & Emerging Technologies, 26, 415-423. doi: 10.1016/j.ifset.2014.10.010
Pintauro, P., Mather, P., Arnoult, O., Choi, J., Wycisk, R. y Lee, K. M. (2007). Composite Membranes for Hydrogen/Air PEM Fuel Cells. ECS Transactions, 11(1), 79-87. doi: 10.1149/1.2780917
Poole, C. P. y Owens, F. J. (2003). Introduction to nanotechnology. John Wiley & Sons.
Rajesh, Ahuja, T. y Kumar, D. (2009). Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B: Chemical, 136(1), 275-286. doi: 10.1016/J.SNB.2008.09.014
Reneker, D. H. (2003). Process and apparatus for the production of nanofibers. Google Patents. Recuperado de https://www.google.ch/patents/US6520425
Reneker, D. H. (2004). Process and apparatus for the production of nanofibers. Google Patents. Recuperado de http://www.google.ch/patents/US6695992
Reneker, D. H. y Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3).
Reneker, D. H., Chun, I. y Ertley, D. (2002). Process and apparatus for the production of nanofibers. Google Patents. Recuperado de https://www.google.ch/patents/US6382526
Schulz, W. (2000). Nanotechnology: The next big thing. Chemical and Engineering News, 78(18), 41-47. doi: 10.1021/cen-v078n018.p041
Scopus. (2017). Journal title list. Recuperado de https://www.scopus.com
Son, D. H., Hughes, S. M., Yin, Y. y Alivisatos, A. Paul (2004). Cation Exchange Reactions in Ionic Nanocrystals. Science, 306(5698), 1009-1012.
doi: 10.1126/science.1103755
Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M. y Ko, F. (2003). Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer, 44(19), 5721-5727. doi: 10.1016/S0032-3861(03)00532-9
Sundaray, B., Subramanian, V., Natarajan, T. S., Xiang, R.-Z., Chang, C.-C. y Fann, W.-S. (2004). Electrospinning of continuous aligned polymer fibers. Applied Physics Letters, 84(7), 1222-1224. doi: 10.1063/1.1647685
Taylor, G. (1969). Electrically Driven Jets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 313(1515), 453-475.
doi: 10.1098/rspa.1969.0205
Tsipis, E. V. y Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. Journal of Solid State Electrochemistry, 12(11), 1367-1391. doi: 10.1007/s10008-008-0611-6
Van der Veen, V. C., Boekema, B. K. H. L., Ulrich, M. M. W. y Middelkoop, E. (2011). New dermal substitutes. Wound Repair and Regeneration, 19(s1), s59-s65.
doi: 10.1111/j.1524-475X.2011.00713.x
Vasita, R. y Katti, D. S. (2006). Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 1(1), 15-30. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/17722259
Wang, G., Shen, X., Yao, J. y Park, J. (2009). Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 47(8), 2049-2053.
doi: 10.1016/j.carbon.2009.03.053
Wang, H. y Qi, L. (2008). Controlled Synthesis of Ag2S, Ag2Se, and Ag Nanofibers by Using a General Sacrificial Template and Their Application in Electronic Device Fabrication. Advanced Functional Materials, 18(8), 1249-1256. doi: 10.1002/adfm.200700953
Wang, X., Um, I. C., Fang, D., Okamoto, A., Hsiao, B. S. y Chu, B. (2005). Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 46(13), 4853-4867. doi: 10.1016/j.polymer.2005.03.058
Wang, Z. L. (2000). Characterizing the Structure and Properties of Individual Wire-Like Nanoentities. Advanced Materials, 12(17), 1295-1298. doi: 10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B
Wen, P., Zong, M.-H., Linhardt, R. J., Feng, K. y Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology, 70, 56-68. doi: 10.1016/j.tifs.2017.10.009
Wernsdorfer, W. y Sessoli, R. (1999). Quantum phase interference and parity effects in magnetic molecular clusters. Science, 284(5411), 133-135.
doi: 10.1126/science.284.5411.133
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., … Yan, H. (2003). One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353-389. doi: 10.1002/adma.200390087
Xu, C. Y., Inai, R., Kotaki, M. y Ramakrishna, S. (2004). Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25(5), 877-886. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/14609676
Yang, F., Both, S. K., Yang, X., Walboomers, X. F. y Jansen, J. A. (2009). Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomaterialia, 5(9), 3295-3304. doi: 10.1016/J.ACTBIO.2009.05.023
Yang, Y., Wen, J., Wei, J., Xiong, R., Shi, J. y Pan, C. (2013). Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Applied Materials & Interfaces, 5(13), 6201-6207. doi: 10.1021/am401167y
Yoo, H. S., Kim, T. G. y Park, T. G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 61(12), 1033-1042. doi: 10.1016/J.ADDR.2009.07.007
Yuan, X., Zhang, Y., Dong, C. y Sheng, J. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11), 1704-1710. doi: 10.1002/pi.1538
Zheng-Ming, H., Zhang, Y.-Z., Kotaki, M. y Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. doi: 10.1016/S0266-3538(03)00178-7