Cómo citar
Ibatá Soto, A., Agudelo Valencia, R. N., & López Vásquez, A. F. (2018). Effect of pH and temperature on photocatalytic oxidation of methyl orange using black sand as photocatalyst. Revista Mutis, 8(1), 43-54. https://doi.org/10.21789/22561498.1373


Azo dyes are considered hazardous compounds for the environment and human health. Methyl orange is one type of azo dyes and it is widely used in textile, leather, and other chemical industries. The degradation of this compound is a challenge for traditional treatments. Advanced oxidation processes such as heterogeneous photocatalysis, sonolysis, radiolysis, etc., become an alternative for mineralizing organic compounds by producing a highly oxidant agent (OH•). Nowadays, a great number of research studies have tried to modify TiO2 with metals in order to improve the degradation of hazardous pollutants such as azo dyes. This study used black sand as an alternative photocatalyst, evaluating the influence of pH (2, 5, 3 and 8) and temperature (20, 25, 30 and 35°C) on the photocatalytic oxidation of methyl orange. Black sand was magnetically separated. The fraction that showed the best characteristics for dye degradation was used. Experimental results allowed establishing that methyl orange photocatalytic oxidation is best performed at pH 2 and 30°C, with a degradation percentage of 96.93%. The reaction follows a pseudo-first order kinetic. In addition, the kinetic coefficient found at different temperatures was correlated using Arrhenius equation in order to determinate changes in the kinetic coefficient depending on the temperature. The equation pre-exponential coefficient was 374782115.1 and energy activation was -58,104.4 J mol-1 K-1.


Acosta, P., Ibatá, A., & López, A. (2016). Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction. International Scholarly and Scientific Research & Innovation, 10(10), 1349-1353.

Arshadi, M., Abdolmaleki, M. K., Mousavinia, F., Khalafi-Nezhad, A., Firouzabadi, H., & Gil, A. (2016). Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes. Chemical Engineering Research and Design, 112(Supplement C), 113-121. doi:10.1016/j.cherd.2016.05.028.

Chen, L. C., Tsai, F. R., & Huang, C. M. (2005). Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3. Journal of Photochemistry and Photobiology A: Chemistry, 170(1), 7-14. doi:10.1016/j.jphotochem.2004.07.012.

Cheng, X. Q., Ma, C. Y., Yi, X. Y., Yuan, F., Xie, Y., Hu, J. M., … & Zhang, Q. Y. (2016). Structural, morphological, optical and photocatalytic properties of Gd-doped TiO2 films. Thin Solid Films, 615(Supplement C), 13-18. doi:10.1016/j.tsf.2016.06.049.

Dagar, A., & Narula, A. K. (2016). Photo-degradation of methyl orange under visible light by PEDOT/NiO/Fly ash cenosphere. Materials Chemistry and Physics, 183(Supplement C), 561-570. doi:10.1016/j.matchemphys.2016.09.015.

Dahm, C., & L. Brezonik, P. (1995). Chemical Kinetics and Process Dynamics in Aquatic Systems. Journal of the North American Benthological Society, 14, 354.

Feng, C., Liu, L., Li, F., & Li, X. (2009). Microbial fuel cell with an azo-dye-feeding cathode. Applied Microbiology and Biotechnology, 85, 175-183.

Figueroa, S., Vázquez, L., & Alvarez-Gallegos, A. (2009). Decolorizing textile wastewater with Fenton’s reagent electrogenerated with a solar photovoltaic cell. Water Research, 43(2), 283-294. doi:10.1016/j.watres.2008.10.014.

Gao, Y., Yang, M., Hu, J., & Zhang, Y. (2004). Fenton’s process for simultaneous removal of TOC and Fe2+ from acidic waste liquor. Desalination, 160, 123-130.

Hai, F. I., Yamamoto, K., Nakajima, F., & Fukushi, K. (2011). Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Research, 45(6), 2199-2206. doi:10.1016/j.watres.2011.01.013.

He, H., Zhong, Y., Liang, X., Tan, W., Zhu, J., & Wang, C. Y. (n.d.). Natural Magnetite : an efficient catalyst for the degradation of organic contaminant. Nature Publishing Group, 1-10.

Herney-Ramirez, J., Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98(1), 10-26. doi:10.1016/j.apcatb.2010.05.004.

Iliev, V., Tomova, D., Todorovska, R., Oliver, D., Petrov, L., Todorovsky, D., & Uzunova-Bujnova, M. (2006). Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution. Applied Catalysis A: General, 313(2), 115-121. doi:10.1016/j.apcata.2006.06.039.

Lee, H. J., Kim, J. H., Park, S. S., Hong, S. S., & Lee, G. D. (2015). Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 25(Supplement C), 199-206. doi:10.1016/j.jiec.2014.10.035.

Li, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40(6), 1119-1126. doi:10.1016/j.watres.2005.12.042.

Lien, H. L., & Zhang, W. X. (2007). Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental, 77(1), 110-116. doi:10.1016/j.apcatb.2007.07.014.

Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 87(3), 105-145. doi:10.1016/j.apcatb.2008.09.017.

Matos, J., Laine, J., & Herrmann, J. M. (2001). Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania. Journal of Catalysis, 200(1), 10-20. doi:10.1006/jcat.2001.3191.

Matouq, M., Al-Anber, Z., Susumu, N., Tagawa, T., & Karapanagioti, H. (2014). The kinetic of dyes degradation resulted from food industry in wastewater using high frequency of ultrasound. Separation and Purification Technology, 135(Supplement C), 42-47. doi: 10.1016/j.seppur.2014.08.002

Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., Yahya, A., van-Loosdrecht, M. C. M., … & Nawahwi, M. Z. (2010). Development of granular sludge for textile wastewater treatment. Water Research, 44(15), 4341-4350. doi:10.1016/j.watres.2010.05.023.

Oros-Ruiz, S., Gómez, R., López, R., Hernández-Gordillo, A., Pedraza-Avella, J. A., Moctezuma, E., & Pérez, E. (2012). Photocatalytic reduction of methyl orange on Au/TiO2 semiconductors. Catalysis Communications, 21(Supplement C), 72-76. doi:10.1016/j.catcom.2012.01.028.

Reyes Gomez, G.A. (2015). Producción fotocatalítica de hidrógeno basada en el mineral arena negra, Universidad Libre sede Principal, https://repository.unilibre.edu.co/handle/10901/9974?show=full.

Sahel, K., Elsellami, L., Mirali, I., Dappozze, F., Bouhent, M., & Guillard, C. (2016). Hydrogen peroxide and photocatalysis. Applied Catalysis B: Environmental, 188(Supplement C), 106-112. doi:10.1016/j.apcatb.2015.12.044.

Schoonen, M. A. A., Xu, Y., & Strongin, D. R. (1998). An introduction to geocatalysis. Journal of Geochemical Exploration, 62(1), 201-215. doi:10.1016/S0375-6742(97)00069-1.

Sonawane, R. S., & Dongare, M. K. (2006). Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. Journal of Molecular Catalysis A: Chemical, 243(1), 68-76. doi:10.1016/j.molcata.2005.07.043.

Subbaiah, M. V., & Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128(Supplement C), 109-117. doi:10.1016/j.ecoenv.2016.02.016.

Vargas, J. A., & Forero, A. H. (2011). Obtención de hierro a partir de arenas negras del Atlántico colombiano. Desembocadura río Magdalena. Revista de la Facultad de Ingeniería, 26, 19-26.

Wang, E., Zheng, Q., Xu, S., & Li, D. (2011). Treatment of Methyl Orange by Photocatalysis Floating Bed. Procedia Environmental Sciences, 10(Part B), 1136-1140. doi:10.1016/j.proenv.2011.09.181.

Yan, J., Zhu, Y., Qiu, F., Zhao, H., Yang, D., Wang, J., & Wen, W. (2016). Kinetic, isotherm and thermodynamic studies for removal of methyl orange using a novel β-cyclodextrin functionalized graphene oxide-isophorone diisocyanate composites. Chemical Engineering Research and Design, 106(Supplement C), 168-177. doi:10.1016/j.cherd.2015.12.023


La descarga de datos todavía no está disponible.
Sistema OJS - Metabiblioteca |