Brasicáceas y perspectivas de control biológico del insecto plaga Plutella xylostella (Lepidóptera: Plutellidae) utilizando Bacillus thuringiensis

Palabras clave: manejo integrado de plagas, insecticidas químicos, toxinas Cry, mortalidad, LC50

Resumen

La Plutella xylostella (L.) es un insecto plaga que afecta principalmente los cultivos de brasicáceas o crucíferas como el repollo, coliflor, brócoli y rábano, entre otros. Las limitaciones del rendimiento y calidad de estos cultivos se deben principalmente al difícil manejo de esta plaga. En la actualidad, para controlar la P. xylostella se utilizan insecticidas de síntesis química, como piretroides, carbamatos u organofosforados, los cuales tienen acción inmediata pero causan efectos adversos en la salud y en el ambiente. Adicionalmente, la ausencia de enemigos naturales capaces de controlar a sus poblaciones, y su resistencia a numerosos insecticidas convencionales hacen que este insecto se establezca rápidamente en áreas productoras de brasicáceas. Se calcula que los costos mundiales asociados al control de la P. xylostella, sumados a las pérdidas en la producción agrícola, están entre cuatro y cinco billones de dólares anuales.

Se han propuesto alternativas seguras, efectivas y de menor impacto ambiental, como el control biológico, que permite la producción sostenible de los cultivos de brasicáceas. La industria agrícola y forestal reconoce a la bacteria entomopatógena Bacillus thuringiensis (Bt) como una buena alternativa biológica a los insecticidas químicos, puesto que es inocua sobre el ambiente y su toxicidad es altamente selectiva, ligada a su estrecho rango de especificidad sobre diferentes insectos plaga de los órdenes Lepidóptera, Coleóptera y Díptera. En esta revisión se presentan las posibilidades actuales que se pueden emplear para el control de la P. xylostella utilizando modelos investigativos basados en ensayos biológicos con Bt. Dichas posibilidades buscan superar las desventajas existentes en relación con la plaga P. xylostella y los cultivos de brasicáceas, además de entender la fisiología de Bt bajo condiciones que permitan incrementar la eficacia en el control biológico.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Julieth Mena Guerrero, Universidad de Bogotá Jorge Tadeo Lozano
Investigador del Grupo de Investigación Genética, Biología Molecular y Bioinformática (Genbimol) del Departamento de Ciencias Biológicas y Ambientales de la Facultad de Ciencias Naturales e Ingeniería
Javier Hernández Fernández, Universidad de Bogotá Jorge Tadeo Lozano
Profesor asociado y líder del Grupo de Investigación Genética, Biología Molecular y Bioinformática (Genbimol) del Departamento de Ciencias Biológicas y Ambientales de la Facultad de Ciencias Naturales e Ingeniería

Citas

Benintende, G., López Meza, J., Cozzi, J. e Ibarra, J. (1999). Novel non-toxic isolates of Bacillus thuringiensis. Lett Appl Microbiol, 29, 151-155.

Bravo, A., Gill, S. y Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435.

Bravo, A., Gómez, I., Porta, H., García Gómez, B., Rodríguez Almazán, C., Pardo, L. y Soberón, M. (2012). Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol, 6(1), 17-26.

Chen, M., Chen, P., Pang, J., Lin, C., Hwang, C. y Tsen, H. (2014). The correlation of the presence and expression levels of Cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains. Toxins, 6, 2453-2470.

Conte de Oliveira, A., Abreu de Siqueira, H., Vargas de Oliveira, J., da Silva, J. y Michereff, M. (2011). Resistance of Brazilian diamondback moth populations to insecticides. Sci. Agric, 68(2), 154-159.

Corpoíca. (1998). Productos y procesos tecnológicos por macrorregión: contribución de Corpoíca a la investigación y al desarrollo tecnológico agropecuario. Bogotá, D. C, Colombia.

Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., Schnepf, E., Sun, M. y Zeigler, D. (2016). Bacillus thuringiensis toxin nomenclature. Recuperado de http://www.btnomenclature.info/.

Dai, R., Su, X., Jin, X., Zhang, J., Guan, X., Chen, C., Shu, C. y Huang, T. (2016). Cloning, expression, purification, and insecticidal activity of a novel Cry1Na3 toxin from Bacillus thuringiensis BRC-ZYR2. Journal of Economic Entomology, 109(3), 1064-1070.

Dosdall, L. (2014). Diamondback Moth. Recuperado de http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex2540/$file/622-19.pdf?OpenElement.

FAO (2005). Intercountry programme to strengthen IPM training and sustain IPM practices among vegetable farmers in South and Southeast Asia. Vegetable IPM strategy. Country reports for the bi-annual FAO Regional Vegetable IPM Programme Meeting, 25–30 April 2005, Luang Prabang, Laos PDR.

Furlong, M., Wright, D. y Dosdall, L. (2013). Diamondback moth ecology and management: problems, progress and prospects. Annual Review of Entomology, 58, 517-541.

Gordon, R., Haynes, W., Pang, C. (1973). The genus bacillus. US Department of Agriculture Handbook, 427. Washington DC., USDA, 109-126.

Han, G., Li, C., Liu, Q. y Xu, J. (2015). Synergistic effect of combining Plutella xylostella granulovirus and Bacillus thuringiensis at sublethal dosages on controlling of diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 108(5), 2184-2191.

Head, G. y Greenplate, J. (2012). The desing and implementation of insect resistance management programs for Bacillus thuringiensis crops. Journal GM Crops & Food, 3(3), 144-153.

Hernández Fernández, J. (2016). Bacillus thuringiensis: a natural tool in insect pest control. En V. Gupta (ed.). The Handbook of Microbial Bioresourses. India: CABI Publishers, 121-139.

Hernández Fernández, J. y López Pazos, S.A. (2011). Bacillus thuringiensis: soil microbial insecticide, diversity and their relationship with the entomopathogenic activity. En M. Miransari (ed.), Soil microbes and environmental health. Bogotá: Nova Science Publishers, 59-80.

Hofte, H. y Whiteley, H. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255.

Ibiza, M. (2015). Bases de la resistencia a preparados bioinsecticidas basados en Bacillus thuringiensis en diferentes especies de insectos (tesis doctoral). Universidad de Valencia, Valencia, España.

Ibrahim. M., Griko, N., Junker, M. y Bulla, L. (2010). Bacillus thuringiensis: A genomics and proteomics perspective. Bioengineered Bugs, 1(1), 31-50.

Jiang, T., Wu, S., Yang, T., Zhu, C., Gao, C. (2015). Monitoring field populations of Plutella xylostella (Lepidoptera: Plutellidae) for resistance to eight insecticides in China. Florida Entomologist, 98(1), 65-73.

Legwaila, M., Munthaili, D., Kwerepe, B y Obopile, M. (2015). Efficacy of Bacillus thuringiensis (var. kurstaki) against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under semi-controlled greenhouse conditions. International Journal of Insect Science, 7, 39-45.

León, G. de (2010). Caracterización del espectro de acción de la toxina CryAbMod, activa contra insectos resistentes, y su comparación con la toxina convencional Cry1Ab de Bacillus thuringiensis (tesis doctoral). Universidad Nacional Autónoma de México, México.

Lira, J., Beringer, J., Burton, S., Griffin, S., Sheets, J., Yee, S., Woosley, A., Worden, S. y Narva, K. (2013). Insecticidal activity of Bacillus thuringiensis Cry1Bh1 against Ostrinia nubialis (Hubner) (Lepidoptera: Crambidae) and other lepidopteran pest. Appl Environ Microbiol, 79(24), 7590-7597.

López Meza, J. e Ibarra, J. (1996). Characterization of a novel strain of Bacillus thuringensis. Appl Environ Microbiol, 62, 1306-1310.

López Pazos, S. (2011). Actividad biológica de proteínas Cry recombinantes de Bacillus thuringiensis sobre larvas de primer instar de Hypothenemus hampei Ferrari (Coleóptera: Scolytidae) (tesis doctoral). Universidad Nacional de Colombia, Bogotá, Colombia.

Maagd, M. de, Bravo, A. y Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trend Genet, 17(4), 193-199.

Magalhaes, G., Vacari, A., Laurentis, V., de Bortoli, D. y Polanczyk (2014). Interactions of Bacillus thuringiensis bioinsecticides and the predatory stink bug Podisus nigrispinus to control Plutella xylostella. Journal of Applied Entomology, 1(2), 123-133.

Muñiz, R., Marín, A., Díaz, L., Gámez, A., Ávila, M., Herrera, R., Dorantes, J. y Gámez, F. (2013). Manejo integrado de la palomilla dorso de diamante Plutella xylostella (L.) en la región del bajío, México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México: Dzibal Impresos.

Nangong, Z., Wang, Q., Song, P., Hao, J., Yang, Q. y Wang, L. (2016). Synergism between Bacillus thuringiensis and Xenorhabdus nematophila against resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae). Biocontrol Science and Technology, 26(10), 1411-1419.

Nathan, S., y Kalaivani, K. (2006). Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol. Control, 39, 96-104.

Navarro, D. (2010). Manejo integrado de plagas. University of Kentucky. Collegue of Agriculture, Food and Environment. Cooperative Extension Service. Recuperado de http://www2.ca.uky.edu/agcomm/pubs/id/id181/id181.pdf.

Nian, X., He, Y., Lu, L. y Zhao, R. (2014). Evaluation of the time–concentration–mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Pest Management Science, 71(2), 216-224.

Nian, X., He, Y., Lu, L. y Zhao, R. (2015). Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidia formulations, oil-based formulation and wettable powder combined with Bacillus thuringiensis. Pest Manag Sci, 71(12), 1675-1684.

OMS (1996). Recommended classification of pesticides by hazard and guidelines to classification 1996-1997. Organización Mundial de la Salud, IPCS, Ginebra.

Pan, Z., Xu, L., Zhu, Y., Shi, H., Chen, Z., Chen, M., Chen, Q. y Liu, B. (2014). Characterization of a new Cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella. L. World J Microbiol Biotechnol, 30(10), 2655-2662.

Panuwet, P., Siriwong, W., Prapanontol, T., Ryan, B., Fiedler, N., Robson, M y Boyd, D. (2012). Agricultural pesticide management in Thailand: Situation and population health risk. Environ. Sci. Policy, 17(1), 72-81.

Pigott, C. y Ellar, D. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255-281.

Porcar, M. y Juárez Pérez, V. (2004). Aislamiento y establecimiento de una colección de Bacillus thuringiensis. En A. Bravo y J. Cerón (eds.) Bacillus thuringiensis en el control biológico. Bogotá: Universidad Nacional de Colombia, pp. 69-100.

Reckha, B., Srinivasan, R., Kumar, A., Bharpoda, T. y Cgatterjee, H. (2011). Susceptibility of diamondback moth and cabbage head caterpillar to Bacillus thuringiensis (Bt) δ -endotoxins on vegetable brassicas in India. En The 6th International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests. Tailandia: Nakhon Pathom.

Roh, J., Choi, J., Li, M., Jin, B. y Je, Y. (2007). Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol, 17, 547-559.

Rosa, M., Araya, J., Guerrero, M. y Lamborot, L. (1997). Niveles de resistencia de Plutella xylostella (L.) a tres insecticidas en varias localidades de la zona central de Chile. Bol. San. Veg. Plagas, 23, 571-581.

Santos, C., Siquiera, H., Da Silva, J. y De Farias, M. (2011). Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotrop. Entomol, 40(2), 264-270.

Sarfraz, M., Dosdall, L. y Keddie, B. (2006). Diamondback moth-liost plant interactions: Implications for pest managemcnt. Crop Protection, 25, 625-639.

Sauka, D. y Benintende, G. (2008). Bacillus thuringiensis: generalidades. Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas. Revista Argentina de Microbiología, 40, 124-140.

Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. y Dean, D. (1998). Bacillus thuringiensis and its posticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806.

Schünemann, N., Knaak, N. y Fiuza, L. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN microbiology, 135675. Recuperado de http://doi.org/10.1155/2014/135675.

Shelton, A., Sances, F., Hawley, J., Tang, J., Boune, M., Jungers., Collins, H. y Farias, J. (2000). Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. J. Econ. Entomol, 93(3), 931-936.

Soberón, M. y Bravo, A. (2007). Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación. Biotecnología, 14, 303-314.

Srinivasan, R., Shelton, A. y Collins, H. (2011). The Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, 21‐25 March 2011, Kasetsart University, Nakhon Pathom, Thailand. AVRDC – The World Vegetable Center, Publication No. 11‐755. AVRDC – The World Vegetable Center, Taiwan.

Swiecicka, I., Bideshi, D. y Federeci, B. (2008). Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl. Environ. Microbiol, 74(4), 923-930.

Tabashnik, B., Cushing, N. y Johnson, M. (1987). Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-island variation and cross-resistance. J. Econ. Entomol, 80, 1091-1099.

Talekar, N. y Shelton, A. (1993). Biology, ecology, and management of the diamonback moth. Annu. Rev. Entomol, 38, 275-301.

Vacari, A., Otuka, A. y de Bortoli, S. (2007). Desenvolvimento de Podisus nigrispinus (Dallas, 1851) (Hemiptera: Pentatomidae) alimentado com lagartas de Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Arq. Inst. Biol, 74, 259-265.

Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology, 101(1), 1-16.

Wang, X., Khakame, S., Ye, C., Yang, Y. y Wu, Y. (2012). Characterization of field-evolved resistance to chlorantraniliprole in the diamond backmoth, Plutella xylostella, from China. Pest Management Science, 69(5), 661-665.

Wang, R. y Wu, Y. (2014). Dominant fitness costs of abamectin resistance in Plutella xylostella. Pest Manag Sci, 70(12), 1872-1876.

Wang, Y., Wei, R., Zhu, H. y Zhou, X. (2015). Determination of resistance to seven insecticides in Plutella xylostella L. in fields of Northern Hunan. Agricultural Science & Technology, 15(3), 553-555.

Xia, Y., Lu, Y., Shen, J., Gao, X., Qiu, H. y Li, J. (2014). Resistance monitoring for eight insecticides in Plutella xylostella in central China. Crop Protection, 63, 131-137.

Zalucki, M., Shabbir, A., Silva, R., Adamson, D., Shu-Sheng, L. y Furlong, J. (2012). Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology, 105(4), 1115-1129.
Cómo citar
Mena Guerrero, J., & Hernández Fernández, J. (2017, septiembre 18). Brasicáceas y perspectivas de control biológico del insecto plaga Plutella xylostella (Lepidóptera: Plutellidae) utilizando Bacillus thuringiensis. Revista Mutis, 7(2), 7-22. https://doi.org/https://doi.org/10.21789/22561498.1245
Publicado
2017-09-18
Sección
Artículos