Dimensions

PlumX
Cómo citar
Pedreros Calvo, C., Valderrama Lopez, K. V. ., Agudelo Valencia, R. N., Pérez Cortés, K. ., & Campo, C. E. . (2021). Reducción de la concentración de DQO y COT en aguas residuales de la industria farmacéutica empleando ozono catalizado por Fe2+. Estudio de caso a escala real. Revista Mutis, 11(2), 56–63. https://doi.org/10.21789/22561498.1707
Términos de licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Resumen

El presente trabajo fue realizado con el fin de mejorar el desempeño de un sistema de ozonización utilizado para el tratamiento de aguas residuales en una industria farmacéutica. Con el objeto de mejorar la mineralización de la materia orgánica, se aplicó como catalizador sulfato ferroso al sistema de reacción. Seguido de esto, se ajustó el pH del agua entre 8,5 y 10 para que el proceso se lleve a cabo en condiciones alcalinas. Finalmente, se inyectó O3 a través de un tubo Venturi con el fin de mejorar el intercambio de masa entre el gas y el agua. Los datos preliminares de operación del sistema de tratamiento señalan que este alcanza remociones de demanda química de oxígeno (DQO) menores a 10 %. Los ensayos fueron realizados a escala real y las variables de calidad del agua fueron analizadas a diferentes tiempos de reacción. Se determinó que para una dosis de ozono igual a 10 g/h y 10 mg/L de Fe2+ y un pH inicial del agua igual a 9 se requieren de 4,5 horas a fin de lograr una reducción de 30,73 % de DQO y 36,85 % de carbón orgánico total (COT). Los resultados realizados con un pH inicial superior a 9,5 señalan que la efectividad del proceso se reduce, hecho que puede ser ocasionado por la rápida formación de Fe(OH)3 insoluble, con lo cual disminuye la disponibilidad del catalizador para la formación de radicales OH* en el agua.

Palabras clave:

Citas

Başaran-Dindaş, G., Çalişkan, Y., Çelebi, E. E., Tekbaş, M., Bektaş, N., & Yatmaz, H. C. (2020). Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. Journal of Environmental Chemical Engineering, 8(3), 103777. https://doi.org/10.1016/j.jece.2020.103777

Braga, W. L. M., de-Melo, D. H. A., de-Morais, D., Samanamud, G. R. L., França, A. B., Finzi-Quintão, C. M., Loures, C. C. A., de-Urzedo, A. P. F. M., Naves, L. L. R., de-Freitas-Gomes, J. H., & Naves, F. L. (2020). Optimization of the treatment of sanitary landfill by the ozonization catalysed by modified nanovermiculite in a rotating packed bed. Journal of Cleaner Production, 249, 119395. https://doi.org/10.1016/j.jclepro.2019.119395

Cao, Q., Sang, L., Tu, J., Xiao, Y., Liu, N., Wu, L., & Zhang, J. (2020). Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. Chemosphere, 270, 128621. https://doi.org/10.1016/j.chemosphere.2020.128621

Chandak, S., Ghosh, P. K., & Gogate, P. R. (2020). Treatment of real pharmaceutical wastewater using different processes based on ultrasound in combination with oxidants. Process Safety and Environmental Protection, 137, 149-157. https://doi.org/10.1016/j.psep.2020.02.025

Huang, Y., Luo, M., Xu, Z., Zhang, D., & Li, L. (2019). Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst. Separation and Purification Technology, 211(March), 269-278. https://doi.org/10.1016/j.seppur.2018.09.080

Lalwani, J., Gupta, A., Thatikonda, S., & Subrahmanyam, C. (2020). Oxidative treatment of crude pharmaceutical industry effluent by hydrodynamic cavitation. Journal of Environmental Chemical Engineering, 8(5), 104281. https://doi.org/10.1016/j.jece.2020.104281

Ling, L., Liu, Y., Pan, D., Lyu, W., Xu, X., Xiang, X., Lyu, M., & Zhu, L. (2020). Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst. Chemical Engineering Journal, 381(866), 122607. https://doi.org/10.1016/j.cej.2019.122607

Mainardis, M., Buttazzoni, M., De-Bortoli, N., Mion, M., & Goi, D. (2020). Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. Journal of Cleaner Production, 258, 120781. https://doi.org/10.1016/j.jclepro.2020.120781

Olvera-Vargas, H., Gore-Datar, N., Garcia-Rodriguez, O., Mutnuri, S., & Lefebvre, O. (2021). Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and heterogenous [rad]OH. Chemical Engineering Journal, 404(January), 126524. https://doi.org/10.1016/j.cej.2020.126524

Preethi, V., Parama-Kalyani, K. S., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N., & Vedaraman, N. (2009). Ozonation of tannery effluent for removal of COD and color. Journal of Hazardous Materials, 166(1), 150-154. https://doi.org/10.1016/j.jhazmat.2008.11.035

Rekhate, C. V., & Srivastava, J. K. (2020). Recent advances in ozone-based advanced oxidation processes for treatment of wastewater. A review. Chemical Engineering Journal Advances, 3(June), 100031. https://doi.org/10.1016/j.ceja.2020.100031

Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75(February), 33-51. https://doi.org/10.1016/j.envint.2014.10.027

Wang, C., Li, A., & Shuang, C. (2018). The effect on ozone catalytic performance of prepared-FeOOH by different precursors. Journal of Environmental Management, 228(163), 158-164. https://doi.org/10.1016/j.jenvman.2018.08.103

Wang, J., & Chen, H. (2020). Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Science of the Total Environment, 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249

Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095

Descargas

Los datos de descargas todavía no están disponibles.

Citado por

Sistema OJS - Metabiblioteca |