Crecimiento y pigmentos de Spirulina subsalsa cultivada a diferentes salinidades y concentraciones de nitrógeno

Palabras clave: cianobacteria, agua de mar, biotecnología

Resumen

El objetivo de la presente investigación fue evaluar el crecimiento y el contenido de pigmentos de un nuevo aislado de Spirulina subsalsa cultivada en agua mar a diferentes salinidades y concentraciones de nitrógeno. La nueva cepa de S. subsalsa se aisló a partir de muestras de agua procedentes del embalse de Clavellino, estado Sucre, Venezuela, y fue identificada haciendo uso de la clave taxonómica propuesta por Aguiar (2013). El medio de cultivo ensayado fue el f/2, modificando las concentraciones de nitrato (14,5; 29 y 58 mmol/L) y cloruro de sodio (0, 9 y 18 ‰ por adición de agua de mar). Los cultivos se realizaron por triplicado, de forma discontinua, bajo condiciones de medio ambiente controlado (T: 30±1 ºC; iluminación: 3.000 lux; agitación manual, fotoperiodo 12:12), durante 21 días. Los resultados obtenidos evidenciaron que la salinidad de 9 ‰ y la concentración de nitrato de 14 mmol/L fueron los parámetros que propiciaron los mayores contenidos de biomasa; mientras que la clorofila a y la ficocianina mostraron mayores valores en la misma concentración de nitrógeno, pero a 0 ‰. Estos hallazgos indican que la salinidad y la concentración de nitrógeno afectan el crecimiento y los pigmentos del nuevo aislado de S. subsalsa y además sugieren que esta cepa posee potencial para su aprovechamiento biotecnológico con miras a obtener metabolitos valiosos en las industrias alimenticias y farmacológicas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Lolymar Romero Maza, Universidad Politécnica Territorial del Oeste de Sucre, Venezuela

Licenciada en Química y Magister Scientiarum en Ciencias Marinas de la Universidad de Oriente. Universidad Politécnica Territorial del Oeste de Sucre, Venezuela

Miguel Guevara, Instituto Superior de Formación Docente Salomé Ureña, República Dominicana

Licenciado en Biología y Magister en Ciencias Marinas  de la Universidad de Oriente. Doctor en Ciencias Biológicas de la Universidad de Concepción. Instituto Superior de Formación Docente Salomé Ureña, República Dominicana.

José Félix Bernal, Universidad de Oriente, Venezuela

Licenciado en Biología y Magister en Ciencias Marinas  de la Universidad de Oriente. Departamento de Biología de la  Universidad de Oriente, Venezuela

Referencias

Abd-El-Baky, H., El-Baz, F., & El-Baroty, G. (2003). Spirulina species as a source of carotenoids and a-tocopherol and its anticarcinoma factors. Biotechnology, 2(3), 222-240.

Aguiar, T. (2013). Cianobactérias marinhas bentônicas filamentosas do litoral do Estado da Bahia, Brasil. Tesis de Maestría, Universida de Estadual de Feira de Santana, Brasil.

Aiba, S., & Ogawa, T. (1977). Assessment of growth yield of a blue-green alga: Spirulina platensis, in axenic and continuous culture. Journal of General Microbiology, 102, 179-182.

Ali, S., & Saleh, A. (2012). Spirulina – An overview. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 9-15.

Amala, K., & Ramanathan, N. (2013). Comparative studies on production of Spirulina platensis on the standard and newly formulated alternative medium. Science Park, 1(1), 1-10.

Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419-435.

Bernal, J. (2002). Taxonomía de microalgas en las riberas del Embalse Clavellinos, Municipio Ribero, estado Sucre, Venezuela. Tesis de Licenciatura. Departamento de Biología, Universidad de Oriente, Cumaná, Venezuela.

Boussiba, S., & Richmond, A. (1979). Isolation and characterization of phycocyanins from the blue alga Spirulina platensis. Archives of Microbiology, 120(2), 155-159.

Çelekli. A., & Yavuzatmaca, M. (2009). Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresource Technology, 100, 1847-1851.

Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.

Cohen, Z., Vonshak, A., & Richmond, A. (1987). Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry, 26, 2255-2258.

Colla, L., Furlong, E., & Vieira, J. (2007a). Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Brazilian Archives of Biology and Technology, 50(1), 161-167.

Colla, L., Reinehr, C., Carolina, R., & Jorge, A. (2007b). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource. Technology, 98(7), 1489-1493.

Da Silva-Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20.

Deng, R., & Chow, T. (2010). Hypolipidemic, antioxidant and anti-inflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics, 28(4), 33-45.

Dineshkumar, R., Umamageswari, P., Jayasingam, P., & Sampathkumar, P. (2015). Enhance the growth of Spirulina platensis using molasses as organic additives. World Journal of Pharmaceutical Research, 4(6), 1057-1066.

El-Khair, A., El-Sayed, B., & El-Sheekh, M. (2018). Outdoor Cultivation of Spirulina platensis for Mass Production. Notulae Scientia Biologicae, 10(1), 38-44.

Encarnação, T., Pais, A., Campos, M., & Burrows, H. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science Progress, 98, 145-168.

Eykelenburg, C. (1979). The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie van Leeuwenhoek, 45, 369-390.

Fábregas, J., Abalde, J., Herrero, C., Cabezas, B., & Veiga, M. (1984). Growth of marine microalgae Tetraselmis suecica in batch cultures with different salinities and nutrient concentration. Aquaculture, 51, 237-243.

Faintuch, B. (1989). Analise comparativa da producao de biomassa a partir de tres cianobacterias empregando distintas fontes nitrogenadas. Master Thesis, University of Sao Paulo, Sao Paulo, Brazil.

Faucher, O., Coupal, B., & Leduy, A. (1979). Utilization of seawater and urea as a culture medium for Spirulina maxima. Canadian Journal of Microbiology, 25, 752.

Fedorov, S., Svetlana, P., Ermakova, T., Zvyagintseva, N., & Stonik, V. (2013). Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Marine Drugs, 11, 4876-4901.

Gallardo-Casas, C., Cano-Europa, E., Lopez-Galindo, G., Blas-Valdivia, V., Olvera-Ramírez, R., Franco-Colín, M., & Ortiz-Butrón, R. (2011). Las ficobiliproteínas de Spirulina maxima y Pseudanabaena tenuis protegen contra el daño hepático y el estrés oxidativo ocasionado por el Hg2+. Revista Mexicana Ciencias Farmacéuticas, 41(2), 30-35.

García, E. (2009). Variación temporal de la concentración de microcistinas y su relación con algunos parámetros ambientales en aguas del embalse Clavellino, estado Sucre. Trabajo de Grado. Licenciatura en Química. Universidad de Oriente, Venezuela.

González, E., Ortaz, M., Peñaherrera, C., Montes, E., Matos, M., & Mendoza, J. (2003). Fitoplancton de cinco embalses de Venezuela con diferentes estados tróficos. Limnetica, 22(1-2), 15-35.

Gómez, P., & González, M. (2005). The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biological Research, 38(2-3), 151-162.

Guevara, M., Arredondo-Vega, B., Palacios, Y., Saéz, K., & Gómez, P. (2016). Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. Journal of Applied Phycology, 28(5), 2651-2660.

Guillard, R. (1975). Culture of phytoplankton for feeding marine invertebrates. En Smith, W. L., & Chanle, M. H. (Eds.). Culture of Marine Invertebrate Animals (pp. 26-60). New York, USA: Editorial Plenum Press.

Jeffrey, S., & Humphrey, G. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194.

Khazi, M., Demirel, Z., & Dalay, M. (2018). Enhancement of biomass and phycocyanin content of Spirulina platensis. Frontiers in Bioscience, 10, 276-286.

Kumari, A., Kumar, A., Pathak, A., & Guria, C. (2014a). Carbon dioxide assisted Spirulina platensis cultivation using NPK-10:26:26 complex fertilizer in sintered disk chromatographic glass bubble column. Journal of CO2 utilization, 8, 49-59.

Kumari, A., Sharma, V., Pathak, A., & Guria, C. (2014b). Cultivation of Spirulina platensis using NPK-10:26:26 complex fertilizer and simulated flue gas in sintered disk chromatographic glass bubble column. Journal of Environmental Chemical Engineering, 2, 1859-1869.

Lamela, T., & Márquez-Rocha, F. (2000). Phycocyanin production in seawater culture of Arthrospira maxima. Ciencias Marinas, 26(4), 607-619.

Layam, A., & Kasi, C. (2006). Antidiabetic property of Spirulina. Diabetologia Croatica, 35(2), 29-33.

Lee, M., Chen, Y., & Peng, T. (2012). Two-stage culture method for optimized polysaccharide production in Spirulina platensis. Journal of the Science of Food and Agriculture, 92(7), 1562-1569.

Lewin, R. (1980). Uncoiled variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Archive Hydrobiology Supplement, 60, 48-52.

Li, Y., Horsman, M., Wu, N., Lan, C., & Dubois, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815-820.

Luo, J., & Jiang, L. (2015). Production of aquatic feed grade algal powder from turtle breeding wastewater using a locally isolated Spirulina sp. JXSC-S1. African Journal of Microbiology Research, 9(51), 2404-2409.

Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., & Sivonen, K. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology, 51, 513-526.

Marín-Prida, J., Llópiz-Arzuaga, A., Pavón, N., Pentón-Rol, G., & Pardo, G. (2015). Aplicaciones de la C-ficocianina: métodos de obtención y propiedades farmacológicas. Revista de Ciencias Farmacéuticas y Alimentarias, 1(1), 29-43.

Markou, G. (2012). Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology, 116, 533-535.

Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: Improvements through phosphorus limitation process. Bioenergy Research, 5, 915-925.

Marrez, D., Naguib, M., Sultan, Y., Daw, Z., & Higazy, A. (2013). Impact of culturing media on biomass production and pigments content of Spirulina platensis. International Journal of Advanced Research, 1(10), 951-961.

Merayo, S., & González, E. (2010) Variaciones de abundancia y biomasa del zooplancton en un embalse tropical oligo-mesotrófico del norte de Venezuela. Revista de Biología Tropical, 58(2), 603-619.

Murugan, T., & Rajesh, R. (2014). Cultivation of two species of Spirulina (Spirulina platensis and Spirulina platensis var lonar) on sea water medium and extraction of C-phycocyanin. European Journal of Experimental Biology, 4(2), 93-97.

Ouhtit, A., Ismail, M., Othman, A., Fernando, A., Abdraboh, M., El-Kott, A., Azab, Y., Abdeen, S., Gaur, R., Gupta, I., Shanmuganathan, S., Al-Farsi, Y., Al-Riyami, H. & Raj, M. … & . (2014). Chemoprevention of rat mammary carcinogenesis by Spirulina. The American Journal of Pathology, 184(1), 296-303.

Pandey, J., & Tiwari, A. (2010). Optimization of biomass production of Spirulina maxima. Journal of Algal Biomass Utilization, 1(2), 20-32.

Pelizer, L., & Oliveira, I. (2014). A method to estimate the biomass of Spirulina platensis cultivated on a solid medium. Brazilian Journal of Microbiology, 45(3), 933-936.

Petrash, D., Gingras, M., Lalonde, S., Orange, F., Pecoits, E., & Konhauser, K. (2012). Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela. Sedimentary Geology, 245-246, 29-47.

Ravelonandro, P., Ratianarivo, D., Joannis-Cassan, C., Isambert, A., & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89(3), 209-216.

Rincón, D., Semprun, A., Dávila, M., Velásquez, H., Morales, E., & Hernández, J. (2013). Producción de harina de Spirulina maxima para ser empleada como ingrediente en la elaboración de dietas para peces. Zootecnia Tropical, 31(3), 187-191.

Rippka, R. (1988). Isolation and purification of cyanobacteria. Methods Enzymology, 167, 3-27.

Rodríguez, G. (2001). The Maracaibo System, Venezuela. En Seeliger, U. & Kjerfve, B. (Eds.). Coastal Marine Ecosystems of Latin America. Berlin: Springer.

Rodríguez, R., Ortiz, R., Blas, V., Hernández A., & Cano, E. (2012). Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chemistry, 135, 2359-2365.

Saini, D., Pabbi, S., & Shukla, P. (2018). Cyanobacterial pigments: Perspectives and biotechnological approaches. Food and Chemical Toxicology, 120, 616-624.

Sallal, A., Al-Hassan, R., & Nimer, N. (1990). Effect of salinity on photosynthesis and glicollate dehydrogenase of Spirulina subsalsa and Sinechocystis sp. British Phycological Society, 25, 201-203.

Salvador, G., Uranga, R., & Giusto, N. (2011). Iron and mechanisms of neurotoxicity. International Journal of Alzheimer's disease, 2011, 1-9.

Sassano, C., Gioielli, L., Almeida, K., Sato, S., Perego, P., Converti, A., & Carvalho, J. (2007). Cultivation of Spirulina platensis by continuous process using ammonium chloride as nitrogen source. Biomass and Bioenergy, 31, 593-598.

Schlösser, U. (1982). Sammlung von Algenkulturen. Berichte der Deutschen Botanischen Gesellschaft 95, 181-276.

Sharma, G., Kumar, M., Irfan, M., & Dut, N. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Journal of Microbial and Biochemical Technology, 6(4), 202-206.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research (3rd Edition). New York: W. H. Freeman and Co.

Soletto, D., Binaghi, L., Ferrari, L., Lodi, A., Carvalho, J., Zilli, M., & Converti, A. (2008). Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochemical Engineering Journal, 39(2), 369-375.

Sommella, E., Conte, G., Salviati, E., Pepe, G., Bertamino, A., Ostacolo, C., Sansone, F., Prete, F., Aquino, R. & ... & Campiglia, P. (2018). Fast profiling of natural pigments in different
Spirulina Arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules, 23(5), 1152.

Soundarapandian, P. & Vasanthi, B. (2010). Effects of chemical parameters on Spirulina platensis biomass production: optimized method for phycocyanin extraction. International Journal of Zoological Research, 6(4), 293-303.

Sreevani, P., Bhanumathi, G., Mohammad, S., & Murthy, S. (2011). Effect of high salt stress on photosynthetic electron transport activities in the cyanobacterium, Spirulina platensis. The Bioscan, 6(2), 311-313.

Tambiev, A., Vasilieva, S., & Lukyanov, A. (2011). Manifestation of salt tolerance of Spirulina platensis and Spirulina maxima cyanobacteria of the genus Arthrospira (Spirulina). Moscow University Biological Sciences Bulletin, 66(4), 133-137.

Torres, L., Lopez, Y., Gomez, Y., Bautista, E., & Corzo, L. (2018). Production and broad characterization of a Spirulina platensis dry powder grown in bubbled columns. Journal of Advances in Microbiology, 9(3), 1-16.

Uslu, L., Isik, O., Koc, K., & Goksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10, 386-389.

Valerio, E., Chambel, L., Paulino, S., Faria, N., Pereira P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155, 642-656.

Van-Den-Hoek, C., Mann, D., & Jahns, H. (1995). Algae. An introduction to Phycology. Cambridge, U. K.: Cambridge University Press.

Whitton, B., & Potts, M. (2012). Introduction on the cyanobacteria. En Whitton, B. (Ed.). Ecology of cyanobacteria II: Their diversity in space and time. (pp. 1-13). Reino Unido: Springer.

Whyte, J. (1987). Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture, 60, 231-241.

Yuan, X., Kumar, A., Sahu, A., & Ergas, S. (2011). Impact of ammonia concentration on Spirulina platensis growth in an air lift photobioreactor. Bioresource Technology, 102(3), 3234-3239.

Zarrouk, C. (1966). Contribution I’étude d’ ue cyanophycée. Influence de divers facteurs physiques et chimiques sur la croisse et la photosynth se de Spirulina maxima (Setch et Gardner) Geitler. Trab. Doct. Universidad de París, Paris, Francia.
Cómo citar
Romero Maza, L., Guevara, M., & Bernal, J. (2018, noviembre 30). Crecimiento y pigmentos de Spirulina subsalsa cultivada a diferentes salinidades y concentraciones de nitrógeno. Revista Mutis, 8(2). Recuperado a partir de https://revistas.utadeo.edu.co/index.php/mutis/article/view/1402
Publicado
2018-11-30
Sección
Artículos